Skip to main content

Glucose Transporters in Central Nervous System Glucose Homeostasis

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 293))

Abstract

The brain is considered to be a glucose-obligatory organ, that is neuronal and glial cells from the central nervous system (CNS) are dependent on glucose as a sole energy source1. The ability of various anatomical areas of the brain to utilize glucose has been shown to have a major impact on the control of certain physiological and behavioral functions of the brain. This has resulted in an increased desire to elucidate the cellular and molecular mechanisms involved in the transport, metabolism, and sensitivity to the glucose in the brain. Recent identification and characterization of a facilitative glucose transporter family have set a pace for research involving glucose uptake systems present in the brain cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lund-Andersen, H. Transport of glucose from blood to brain. Phys. Rev. 59:305–310, 1979.

    CAS  Google Scholar 

  2. Dick, A. P., Harik, S. I., Klip, A., Walker, D. M. Identification and characterization of the glucose transporter of the blood-brain barrier by cytochalasin B binding and immunological reactivity. Proc. Natl. Acad. Sci. USA 81:7233–7237, 1984.

    Article  PubMed  CAS  Google Scholar 

  3. Baldwin, S. A., Cairns, M. T., Gardiner, R. M., Ruggier, R. A. D-glucose-sensitive cytochalasin B binding component of cerebral microvessels. J. Neurochem. 45:650–652, 1985.

    Article  PubMed  CAS  Google Scholar 

  4. Dick, A. P., Harik, S. I. Distribution of the glucose transporter in the mammalian brain. J. Neurochem. 46:1406–1411, 1986.

    Article  PubMed  CAS  Google Scholar 

  5. Matthaei, S., Olefsky, J. M., Horuk, R. Biochemical characterization and subcellular distribution of the glucose transporter from rat brain microvessels. Biochim. Biophys. Acta 905:417–425, 1987.

    Article  PubMed  CAS  Google Scholar 

  6. Kasanicki, M. A., Cairns, M. T., Davies, A., Gardiner, R. M., Baldwin, S. A. dentification and characterization of the glucose-transport protein of the bovine blood/brain barrier. Biochem. J. 247:101–108, 1987.

    PubMed  CAS  Google Scholar 

  7. Kalaria, R. N., Gravina, S. A., Schmidley, J. W., Perry, G., Harik, S. I. The lucose transporter of the human brain and blood-brain barrier. Ann. Neurol. 24:757–764, 1988.

    Article  PubMed  CAS  Google Scholar 

  8. Gerhart, D. Z., LeVasseur, R. J., Broderius, M. A., Drewes, L R. Glucose transporter localization in brain using light and electron immunocytochemistry. J. Neuroscl. Res. 22:464–472, 1989.

    Article  CAS  Google Scholar 

  9. Devaskar, S. The mammalian brain glucose transport system. In: Molecular Biology and Physiology of Insulin and Insulin-like Growth FactorsRaizada, M. K., and LeRoith, D., Plenum Press, New York, 1991 (in press).

    Google Scholar 

  10. Pardridge, W. M., Boado, R. J. and Farrel, C. R. Brain-type glucose transporter (GLUT 1) is selectively localized to the blood brain barrier. J. Biol. Chem. 265:18035–18040, 1990.

    PubMed  CAS  Google Scholar 

  11. Pessin, J. E., Tillotson, L. G., Yamada, K., . Identification of the stereospecific hexose hexose transporter from starved and fed chicken embryo fibroblasts. Proc. Natl. Acad. Sci. USA 79:2286–2290, 1982.

    Article  PubMed  CAS  Google Scholar 

  12. Walker, P. S., Donovan, J. A., Van Ness, B. G., Fellows, R. E. and Pessin, J. E. Glucose-dependent regulation of glucose transport activity, protein, and mRNA in primary cultures of rat brain glial cells. J. Biol. Chem. 263:15594–15601, 1988.

    PubMed  CAS  Google Scholar 

  13. Choi, T. B., Boado, R. J. and Pardridge, W. M. Blood-brain barrier glucose transporter mRNA is increased in experimental diabetes mellitus. Biochem. Biophys. Res. Commun. 164:375–380, 1989.

    Article  PubMed  CAS  Google Scholar 

  14. Harik, S. I., Gravina, S. A. and Kalaria, R. N. Glucose transporter of the blood-brain barrier and brain in chronic hyperglycemia. J. Neurochem. 51:1930–1934, 1988.

    Article  PubMed  CAS  Google Scholar 

  15. Matthaei, S., Horuk, R. and Olefsky, J. M. Blood-brain glucose transfer in diabetes mellitus. Decreased number of glucose transporters at blood-brain barrier. Diabetes. 35:1181–1184, 1986.

    Article  PubMed  CAS  Google Scholar 

  16. Pardridge, W. M., Triguero, D. and Farrell, C. R. Downregulation of blood-brain barrier glucose transporter in experimental diabetes. Diabetes. 39:1040–1044, 1990.

    Article  PubMed  CAS  Google Scholar 

  17. Kayano, T., Fukumoto, H., Eddy, R. L, . Evidence for a Family of Human Transporter-like Proteins. J Biol Chem 263:15245–15248, 1988.

    PubMed  CAS  Google Scholar 

  18. Werner, H., Raizada, M. K., Mudd, L. M., . Regulation of Rat Brain/HepG2 glucose Transporter Gene Expression by Insulin and Insulin-Like Growth Factor-I in Primary Cultures of Neuronal and Glial Cells. Endocrinology 125 No. 1:314–320, 1989.

    Google Scholar 

  19. Mudd, L. M., Werner, H., Shen-Orr, Z., . Regulation of Rat Brain/HepG2 Glucose Transporter Gene Expression by Phorbol Esters in Primary Cultures of Neuronal and Glial Cells. Endocrinology 126 No. 1:545–549, 1990.

    Article  Google Scholar 

  20. Sadiq, F., Holtzclaw, L., Chundu, K., Muzzafar, A. and Devaskar, S. The Ontogeny of the Rabbit Brain Glucose Transporter. Endocrinology 126 No. 5:2417–2424, 1990.

    Article  Google Scholar 

  21. Boado, R. J. and Pardridge, W. M. The Brain-type Glucose Transporter mRNA is Specifically Expressed at the Blood-Brain Barrier. Biochem. Biophys. Res. Commun. 166:174–9, 1990.

    Article  PubMed  CAS  Google Scholar 

  22. Clarke, D., Ramaswamy, A., Holmes, L, Mudd, L., Poulakos, J. and Raizada, M. K. Phorbol Esters Stimulate 2-deoxyglucose Uptake in Glia, but Not Neurons. Brain Research 421:358–362, 1987.

    Article  PubMed  CAS  Google Scholar 

  23. Clarke, D. W., Boyd, F. T., Kappy, M. S. and Raizada, M. K. Insulin Binds to Specific Receptors and Stimulates 2-deoxy D-glucose Uptake in Cultured Glial Cells From Rat Brain. J. Biol. Chem. 259:11672–11678, 1984.

    PubMed  CAS  Google Scholar 

  24. Sivitz, W., DeSautel, S., Walker, P. S. and Pessin J. E. Regulation of the Glucose Transporter In Developing Rat Brain. Endocrin. 124:1875–1880, 1989.

    Article  CAS  Google Scholar 

  25. Werner, H., Adamo, M., Lowe Jr., W. L, Roberts Jr., C. T. and LeRoith, D. Developmental regulation of the Rat Brain/HepG2 Glucose Transporter Gene Expression. Mol. Endocrin. 3:273–279, 1989.

    Article  CAS  Google Scholar 

  26. Steffens, A. B., Sheurink, A. J. W., Porte Jr., D. and Woods, S. C. Penetration of peripheral glucose and insulin into cerebrospinal fluid in rats. Am. J. Physiol. 255:R200, 1988.

    PubMed  CAS  Google Scholar 

  27. Hertz, M. and Paulson, O. Glucose Transfer Across the Blood-Brai Barrier. Adv. Met. Disorders. 10:178–192, 1983.

    Google Scholar 

  28. Oomura, Y. Glucose as a Regulator of Neuronal Activity. Adv. Met. Disorders. 10:31–65, 1983.

    CAS  Google Scholar 

  29. Fukumoto, H., Seino, S., Imura, H.,Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc. Natl. Acad. Sci. USA 85:5434–5438, 1988.

    Article  PubMed  CAS  Google Scholar 

  30. Thorens, B., Sarkar, H. K., Kaback, H. R. and Lodish, H. F. Cloning nad functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell 55:281–290, 1988.

    Article  PubMed  CAS  Google Scholar 

  31. Chen, L, Alam, T., Johnson, J. H., Hughes, S., Newgard, C. B. and Unger, R. H. Regulation of beta-cell glucose transporter gene expression. Proc. Natl. Acad. Sci. USA 87:4088–4092, 1990.

    Article  PubMed  CAS  Google Scholar 

  32. Axelrod, J. D. and Pilch, P. F. Unique Cytochalasin B Binding Characteristics of the Hepatic Glucose Carrier. Biochem. 22:2222–2227, 1983

    Article  CAS  Google Scholar 

  33. Wheeler, T. J. and Hinkle, P. C. The Glucose Transporter of Mammalian Cells. Ann. Rev. Physiol. 47:503–508, 1989.

    Article  Google Scholar 

  34. Keller, K., Strube, M. and Mueckler, M. Functional Expression of the Human HepG2 and Rat Adipocyte Glucose Transporters in Xenopus Oocytes. J. Biol. Chem. 264:1884–1890 , 1989.

    Google Scholar 

  35. Fukumoto, H., Kayano, T., Buse, J. B., . Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin responsive tissues. J Biol Chem 264:7776–7779, 1989.

    PubMed  CAS  Google Scholar 

  36. Thorens, B., Charron, M. J. and Lodish, H. F. Molecular physiology of glucose transporters. Diabetes Care 13:209–218, 1990.

    Article  PubMed  CAS  Google Scholar 

  37. Adamo, M., Raizada, M. K. and Leroith, D. Insulin and Insulin-Like Growth Factor Receptors in the Nervous System. Mol. Neurobiol. 3:72–100, 1989.

    Article  Google Scholar 

  38. Wardzala, L. J., Cushman, S. W. and Salans L. B. Mechanism of Insulin Action on Glucose Transport in the Isolated Rat Adipose Cell. J. Biol. Chem. 253:8002–8005, 1978.

    PubMed  CAS  Google Scholar 

  39. Suzuki, K. and Kono, T. Evidence that Insulin Causes Translocation of Glucose Transport Activity to the Plasma Membrane from an Intracellular Storage Site. Proc. Natl. Acad. Sci. USA. 77:2542–2545, 1980.

    Article  PubMed  CAS  Google Scholar 

  40. Woods, S. C. and Porte Jr., D. The Role of Insulin as a Satiety Factor in the Central Nervous System. Adv. Met. Disorders 10:457–468, 1983.

    CAS  Google Scholar 

  41. Roeder, L. M., Hopkins, I. B., Kaiser, J. R., Hanukoglu, L. and Tildon, J. T. Thyroid Hormone Action on Glucose Transporter Activity in Astrocytes. Biochem. Biophys. Res. Commun. 156:275–281, 1988.

    Article  Google Scholar 

  42. Elbein, A. D. Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annu. Rev. Biochem. 56:497–534, 1987.

    Article  PubMed  CAS  Google Scholar 

  43. Lee, A. S., Delegeane, A. M., Baker, V. and Chow, P. C. Transcriptional regulation of two genes specifically induced by glucose starvation in a hamster mutant fibroblast cell line. J. Biol. Chem. 258:597–603, 1983.

    PubMed  CAS  Google Scholar 

  44. Attenello, J. W. and Lee, A. S. Regulation of a hybrid gene by glucose and temperature in hamster fibroblasts. Science 226:187–190, 1984

    Article  PubMed  CAS  Google Scholar 

  45. Chang, S. C, Wooden, S. K., Nakaki, T., Kim, Y. K., Lin, A. T., Kung, L., Attenello, J. W. and Lee, A. S. Rat gene encoding the 78-kDa glucose regulated protein GRP78: its regulatory sequences and the effect of protein glycosylation on its expression. Proc. Natl. Acad. Sci. USA. 84:680–684, 1987.

    Article  PubMed  CAS  Google Scholar 

  46. Parfett, C. L. J., Brudzynski, K. and Stiller, C. Enhanced accumulation of mRNA for 78-kilodalton glucose-regulated protein (GRP78) in tissues of nonobese diabetic mice. Biochem. Cell Biol. 68:1428–1432, 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Rydzewski, B.Z., Wozniak, M.M., Raizada, M.K. (1991). Glucose Transporters in Central Nervous System Glucose Homeostasis. In: Raizada, M.K., LeRoith, D. (eds) Molecular Biology and Physiology of Insulin and Insulin-Like Growth Factors. Advances in Experimental Medicine and Biology, vol 293. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5949-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5949-4_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5951-7

  • Online ISBN: 978-1-4684-5949-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics