Skip to main content

Restricted Utilization of Germ-Line VH Genes in Rabbits: Implications for Inheritance of VH Allotypes and Generation of Antibody Diversity

  • Chapter
Mechanisms of Lymphocyte Activation and Immune Regulation III

Summary

The presence of inherited VH region allotypic specificities, al, a2 or a3, on nearly all rabbit immunoglobulins has presented a paradox. We know the germline contains hundreds of VH genes, and if we assume that most of these are used in the generation of antibody diversity, then we must ask how have the a allotype-encoding regions been maintained over time? On the other hand, if we assume that only one (or a small number) of these VH gene(s) is (are) used in VDJ gene rearrangements, then, how is antibody diversity generated? To address these questions, we have cloned and determined the nucleotide sequence of the 3′-most germ-line VH genes from the al, a2 and a3 chromosomes and shown in each case that the 3′-most H gene, VHl-al, VHl-a2, or VHl-a3, encodes an al, a2 or a3 VH region, respectively. Analysis of rearranged VD1 genes from leukemic B cells showed that VH1 was utilized in these rearrangements. Based on these data, we propose that the allelic inheritance of the VH allotypes is explained by the preferential usage of the VH1 gene in VDJ rearrangements. Support for this hypothesis was obtained from analysis of the mutant rabbit Alicia in which most serum Ig molecules do not have VHa allotypic specificities, but instead have so-called VHa-negative Ig molecules. In this rabbit, VH1 is not expressed as it has been deleted. Analysis of cDNA clones from spleen of Alicia rabbits suggests that the expressed VHa-negative molecules also are encoded by a single germline VH gene. Thus, we suggest that nearly all rabbit VH regions are encoded by one to two germline VH genes and that antibody diversity is generated primarily by somatic hypermutation and gene conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Dray, G. O. Young, and L. Gerald, Immunochemical identification and genetics of rabbit globulin allotypes, J. Immunol. 91:403 (1963).

    PubMed  CAS  Google Scholar 

  2. S. Dray, G. O. Young, and A. Nisonoff, Distribution of allotypic specificities among rabbit globulin molecules genetically defined at two loci, Nature (Lond.) 199:52 (1963).

    Article  CAS  Google Scholar 

  3. R. G. Mage, K. E. Bernstein, N. Mc-Cartney-Francis, C. B. Alexander, G. O. Young-Cooper, E. A. Padlan, and G. H. Cohen, The structural and genetic basis for expression of normal and latent VRa allotypes of the rabbit, Molec. Immunol. 21:1067 (1984).

    Article  CAS  Google Scholar 

  4. T. J. Kindt, Rabbit immunoglobulin allotypes, Adv. Immunol. 21:35 (1975).

    Article  PubMed  CAS  Google Scholar 

  5. B. S. Kim and S. Dray, Identification and genetic control of allotypic specificities on two variable region subgroups of rabbit immunoglobulin heavy chains, Eur. J. Immunol. 2:509 (1972).

    Article  PubMed  CAS  Google Scholar 

  6. K. H. Roux, A fourth heavy chain variable region subgroup, w, with 2 variants defined by an induced auto-antiserum in the rabbit, J. Immunol. 127:626 (1981).

    PubMed  CAS  Google Scholar 

  7. E. A. Kabat, T. T. Wu, M. Reid-Miller, H. M. Perry, and K. S. Gottesman, “Sequences of Proteins of Immunologic Interest,” U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, 4th Edition (1987).

    Google Scholar 

  8. S. J. Currier, J. L. Gallarda, and K. L. Knight, Partial molecular genetic map of the rabbit VH chromosomal region, J. Immunol. 140:1651 (1988).

    PubMed  CAS  Google Scholar 

  9. J. L. Gallarda, K. S. Gleason, and K. L. Knight, Organization of rabbit immunoglobu lin genes I. Structure and multiplicity of germ-line VH genes, J. Immunol. 135:4222 (1985).

    PubMed  CAS  Google Scholar 

  10. R. S. Becker, S. Zhai, S. J. Currier, and K. L. Knight, Ig VH, DH, and JH germ-line gene segments linked by overlapping cosmid clones of rabbit DNA, J. Immunol. 142:1351 (1989).

    PubMed  CAS  Google Scholar 

  11. K. L. Knight, H. Spieker-Polet, D. S. Kazdin, and V. T. Oi, Transgenic rabbits with lymphocytic leukemia induced by the c-myc oncogene fused with the immunoglobulin heavy chain enhancer, Proc. Natl. Acad. Sci. USA 85:3130 (1988).

    Article  PubMed  CAS  Google Scholar 

  12. R. S. Becker, M. Suter, and K. L. Knight, Restricted utilization of VH and DH genes in leukemic rabbit B cells, Eur. J. Immunol. 20:397 (1990).

    Article  PubMed  CAS  Google Scholar 

  13. L. A. Di-Pietro and K. L. Knight, Restricted utilization of germ-line VH genes and diversity of D regions in rabbit splenic Ig mRNA, J. Immunol. 144:1969 (1990).

    CAS  Google Scholar 

  14. G. D. Yancopoulos, S. V. Desiderio, M. Paskind, J. F. Kearney, D. Baltimore, and F. Alt, Preferential utilization of the most JR-proximal VH gene segments in pre-B cell lines, Nature 311:727 (1984).

    Article  PubMed  CAS  Google Scholar 

  15. H. W. Schroeder, Jr., J. L. Hillson, and R. M. Perlmutter, Early restriction of the human antibody repertoire, Science 283:791 (1987).

    Article  Google Scholar 

  16. K. L. Knight and R. S. Becker, Molecular basis of the allelic inheritance of rabbit immunoglobulin VH allotypes: Implications for the generation of antibody diversity, Cell 60:963 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. A. S. Kelus and S. Weiss, Mutation affecting the expression of immunoglobulin variable regions in the rabbit, Proc. Natl. Acad. Sci. USA 83:4883 (1986).

    Article  PubMed  CAS  Google Scholar 

  18. L. A. Di-Pietro, J. A. Short, S. Zhai, A. S. Kelus, J. Meier, and K. L. Knight, Limited number of immunoglobulin VH regions expressed in the mutant rabbit “Alicia”, Eur. J. Immunol ,(in press, 1990).

    Google Scholar 

  19. H. W. Schroeder, Jr., M. A. Walter, M. H. Hofker, A. Ebens, K. Willems Van Dijk, L. C. Liao, D. W. Cox, E. C. B. Milner, and R. M. Perlmutter, Physical linkage of a human immunoglobulin heavy chain variable region gene segment to diversity and joining region elements, Proc. Natl. Acad. Sci. USA 85:8196 (1988).

    Article  PubMed  CAS  Google Scholar 

  20. C.-A. Reynaud, A. Dahan, V. Anquez, and J.-C. Weill, Somatic hyperconversion diversifies the single VR gene of the chicken with a high incidence in the D region, Cell 59:171 (1989).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Knight, K.L., Becker, R.S., Dipietro, L.A. (1991). Restricted Utilization of Germ-Line VH Genes in Rabbits: Implications for Inheritance of VH Allotypes and Generation of Antibody Diversity. In: Gupta, S., Paul, W.E., Cooper, M.D., Rothenberg, E.V. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation III. Advances in Experimental Medicine and Biology, vol 292. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5943-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5943-2_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5945-6

  • Online ISBN: 978-1-4684-5943-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics