Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 257))

  • 242 Accesses

Abstract

The main reason for studying the crystallization of helium is that, at low temperature, its two isotopes can be made very pure and diffusion problems in bulk phases can be neglected. Then, the dissipation which limits the growth rate takes place at the moving liquid-solid interface, and some information on the crystallization processes can be obtained. The one fact that thermal excitations are different in helium 4 and in helium 3 makes the crystallization of these two quantum systems rather different from one another. Helium 4 was studied some years ago. In helium 3, recent experiments and theoretical articles show that the growth rate is maximum at Tm = 0.32 K where the latent heat vanishes and the growth is isothermal. Below Tm, a temperature difference usually develops between the liquid and the crystal, and the growth rate is much smaller, as a consequence of the necessary flow of a large latent heat through the Kapitza resistance of the liquid-solid interface. This Kapitza resistance is smaller than previously thought, because of the good coupling between transverse modes in the (Fermi) liquid and transverse phonons in the solid. The latent heat is released on the liquid side of the interface, and the intrinsic (or isothermal) growth rate is found to be limited by the momentum exchanges during the reflection of (Fermi) quasiparticles by the crystal lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.Graner, S.Balibar and E.Rolley, J. Low Temp. Phys. 75, 69 (1989).

    Article  ADS  Google Scholar 

  2. J.Bodensohn, K.Nicolai and P.Leiderer, Z. Phys. B64, 55 (1986).

    Article  Google Scholar 

  3. F.Gallet, S.Balibar and E.Rolley, J. de Physique 48, 369 (1987).

    Article  Google Scholar 

  4. E.Rolley, S.Balibar, F.Gallet, F.Graner and C.Guthmann, Europhys. Lett. 8, 523 (1989).

    Article  ADS  Google Scholar 

  5. A.F.Andreev and A.Ya.Parshin, Zh. Eksp. Teor.Fiz. 75, 1511 (1978) (Soy. Phys. JETP 48, 763 (1978)).

    Google Scholar 

  6. B.Castaing and P.Nozières, J. de Physique 41, 701 (1980).

    Article  Google Scholar 

  7. R.M.Bowley and D.O.Edwards, J. de Physique 44, 723 (1983).

    Article  Google Scholar 

  8. A.F.Andreev and V.G.Khnizhnik, Zh. Eksp. Teor. Fiz. 83, 416 (1982) (Soy. Phys. JETP 56, 226 (1982)).

    Google Scholar 

  9. L.Puech, G.Bonfait and B.Castaing, J. Low Temp. Phys. 62, 315 (1986).

    Article  ADS  Google Scholar 

  10. K.O.Kehishev, A.Ya.Parshin and A.B. Babkin, Zh. Eksp. Teor. Fiz. 80, 716 (1981) (Soy. Phys. JETP 53, 362 (1981)).

    Google Scholar 

  11. G.Agnolet, Jpn. J. Appl. Phys. 26, A79 (1987).

    Article  Google Scholar 

  12. S.Balibar, D.O.Edwards and W.F.Saam, submitted to J. Low Temp. Phys. (march 1990).

    Google Scholar 

  13. E.R.Grilly, J. Low Temp. Phys. 4, 615 (1971).

    Article  ADS  Google Scholar 

  14. F.Graner, R.M.Bowley and P.Nozières, To appear in J. Low Temp. Phys. (1990).

    Google Scholar 

  15. H.J.Maris and T.E.Huber, J. Low Temp. Phys. 48, 99 (1982).

    Article  ADS  Google Scholar 

  16. L.Puech, B.Hebral, D.Thoulouze and B.Castaing, J. Physique Lettres 43, L. 809 (1982).

    Google Scholar 

  17. P.E.Wolf, D.O.Edwards and S.Balibar, J. Low Temp. Phys: 51, 489 (1983).

    Article  ADS  Google Scholar 

  18. D.O.Edwards, S.Balibar and P.E.Wolf, 75th Jubilee Conf. on Helium 4, Ed. J.G.M.Armitage, World Scientific (1983) p. 70.

    Google Scholar 

  19. P.Nozières and M.Uwaha, J. de Physique 48, 389 (1987).

    Article  Google Scholar 

  20. A.C.Anderson, J.I.Connolly, O.E.Vilches and J.C.Wheatley, Phys. Rev. 147, 90 (1966).

    Article  ADS  Google Scholar 

  21. P.R.Roach and J.B.Ketterson, Phys. Rev. Lett. 36, 736 (1976).

    Article  ADS  Google Scholar 

  22. F.Dalfovo and S.Stringari, II Nuovo Cimento 6D, 445 (1985).

    Article  ADS  Google Scholar 

  23. J.Amrit and J.Bossy, Proc. of LT19, Physica B 165and166, 529 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Balibar, S., Edwards, D.O., Graner, F., Rolley, E. (1991). Thermal Excitations and Helium 3 Crystallization. In: Wyatt, A.F.G., Lauter, H.J. (eds) Excitations in Two-Dimensional and Three-Dimensional Quantum Fluids. NATO ASI Series, vol 257. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5937-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5937-1_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5939-5

  • Online ISBN: 978-1-4684-5937-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics