Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 290))

Abstract

It is now well established that cystic fibrosis is expressed physiologically as defects in certain fluid and electrolyte transport systems that are highly active in exocrine tissues (Quinton, 1983; Knowles et al., 1983; Kopelman et al., 1982; Orlando et al., 1989). More specifically, two basic physiological defects have been demonstrated directly in at least two of the organ systems characteristically affected in cystic fibrosis -the sweat glands and the airways. The two defects in these affected epithelia appear as 1) an inherently reduced permeability to Cl-(Quinton, 1983; Widdicombe et al., 1985; Knowles, 1983), and 2) a failure of fluid secretion to respond to β-adrenergic stimulation (Sato and Sato, 1984; Widdicombe et al., 1985). The refractory response to β-adrenergic stimulation is most clearly seen in secretory functions and is thought to be due to an inactivatable chloride channel (Welsh, 1986; Frizzell, 1986). While other defects have been associated with cystic fibrosis, e.g., increased Na+ permeability (Knowles et al., 1983; Boucher et al., 1986; Willumsen and Boucher, 1989), abnormal sulfate metabolism (Cheng et al., 1985), and abnormal calcium levels (Sorcher and Beslow, 1982; Shapiro et al., 1980), the basic physiological abnormality in the disease seems to center upon chloride impermeability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boucher, R.C., M.J. Stutts, M.R. Knowles, L. Cantley and J.T. Gatzy, 1986, Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation, J. Clin. Invest., 78:1245.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, P., T. Boat, K. Cranfill, J. Yankaskas and R. Boucher, 1989, Increased sulfation of glycoconjugates by cultured CF nasal epithelial cells, Ped. Pulmon. Suppi., 4:130a.

    Google Scholar 

  • Feigel, R.J. and B.L. Shapiro, 1979, Mitochondrial calcium uptake and oxygen consumption in cystic fibrosis, Nature, 278:276.

    Article  Google Scholar 

  • Frizzell, R.A., G. Rechkemmer and R.L. Shoemaker, 1986, Altered regulation of airway epithelial cell chloride channels in cystic fibrosis, Science, 233:558.

    Article  PubMed  CAS  Google Scholar 

  • Fussle, R., S. Bhakdi, A. Sziegoleit, J. Tranm-Jensen, T. Kranz, and H.J. Weilensiek, 1981, On the mechanism of membrane damage by Staphylococcus aureus α-toxin, J. Cell. Biol., 91:83.

    Article  PubMed  CAS  Google Scholar 

  • Knowles, M., J. Gatzy and R. Boucher, 1981, Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis, New Engl. J. Med., 305: 1489.

    Article  PubMed  CAS  Google Scholar 

  • Kopelman, H., P. Durie, K. Gaskin, Z. Weizman, and G. Forstner, 1985, Pancreatic fluid secretion and protein hyperconcentration in cystic fibrosis, New Engl. J. Med., 12: 329.

    Article  Google Scholar 

  • Li, M., J.D. McCann, C.M., Liedtke, A.C., Nairn, A.C., P. Green-gard and M.J. Welsh, 1988, Cyclic AMP dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium, Nature, 331:358.

    Article  PubMed  CAS  Google Scholar 

  • Li, M., J.D. McCann, J.P. Anderson, C.M. Clancy, C.M. Liedtke, A.C. Nairn, P. Greengard and M.J. Welsh, 1989, Regulation of chloride channels by protein kinase C in normal and cystic fibrosis airway epithelia, Science, 244:1353.

    Article  PubMed  CAS  Google Scholar 

  • Orlando, R.C., D.W. Powell, R.D. Croom, H.M. Berschneider, R.C Boucher and M.R. Knowles. Colonic and esophageal trans epithelial potential difference in cystic fibrosis, 1989, Gastroenterology, 96:1041.

    PubMed  CAS  Google Scholar 

  • Quinton, P.M., 1983, Chloride impermeability in cystic fibrosis, Nature, 301:421.

    Article  PubMed  CAS  Google Scholar 

  • Quinton, P.M., 1986, Missing Cl conductance in cystic fibrosis, Am. J. Physiol., 251:C649.

    PubMed  CAS  Google Scholar 

  • Quinton, P.M. and J.Mc.D. Tormey, 1976, Localization of Na/K-ATPase sites in the secretory and reabsorptive epithelia of perfused eccrine sweat glands: A question to the role of the enzyme in secretion, J. Membrane Biol., 29:383.

    Article  CAS  Google Scholar 

  • Reddy, M.M. and P.M. Quinton, 1989, Localization of Cl conductance in normal and Cl impermeability in cystic fibrosis sweat epithelium, Am. J. Physiol., 257:C727.

    PubMed  CAS  Google Scholar 

  • Reddy, M.M. and P.M. Quinton, 1989, Altered electrical potential profile of human reabsorptive sweat duct cells in cystic fibrosis, Am. J. Physiol., 257:C722.

    PubMed  CAS  Google Scholar 

  • Riordan, J.R., J.M. Rommens, B. Kerem, N. Alon, R. Rozmahel, Z. Grzelczak, J. Zelenski, S. Lok, N. Plavsic, J.L. Chou, M.L. Drumm, M.C. Iannuzzi, F.S. Collins and L.C Tsui, 1989, Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA, Science, 245: 1066.

    Article  PubMed  CAS  Google Scholar 

  • Sato, K. and F. Sato, 1984, Defective beta adrenergic response of cystic fibrosis sweat gland in vivo and in vitro, J. Clin. Invest., 73:1763.

    Article  PubMed  CAS  Google Scholar 

  • Schoumacher, R.A., R.L. Shoemaker, D.R. Halm, E.A. Tallant, R.W. Wallace and R.A. Frizzell, 1987, Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells, Nature, 330:752.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, I.J., 1969, Micropuncture studies of the sweat formation in cystic fibrosis, J. Clin. Ivest., 48:1470.

    Article  Google Scholar 

  • Siegers, J.F.G., 1964, The mechanism of sweat secretion, Pflu-gers Arch., 279:265.

    Article  Google Scholar 

  • Sorscher, E.J. and J.L. Breslow, 1982, Cystic fibrosis: A disorder of calcium-stimulated secretion and transepithelial sodium transport, The Lancet 1:368.

    Article  CAS  Google Scholar 

  • Welsh, M.J. and C.M. Liedtke, 1986, Chloride and potassium channels in cystic fibrosis airway epithelia, Nature, 322: 467.

    Article  PubMed  CAS  Google Scholar 

  • Widdicombe, J.H., M.J. Welsh and W.E. Finkbeiner, 1985, Cystic fibrosis decreases the apical membrane chloride permeability of monolayers cultured from cells of tracheal epithelium, Proc. Natl. Acad. Sci. USA, 82:6167.

    Article  PubMed  CAS  Google Scholar 

  • Willumsen, N.J. and R.C. Boucher, 1989, Shunt resistance and ion permeabilities in normal and cystic fibrosis airway epithelia, Am. J. Physiol, 256:C1054.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Quinton, P.M., Reddy, M.M. (1991). Regulation of Absorption in the Human Sweat Duct. In: Tsui, LC., Romeo, G., Greger, R., Gorini, S. (eds) The Identification of the CF (Cystic Fibrosis) Gene. Advances in Experimental Medicine and Biology, vol 290. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5934-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5934-0_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5936-4

  • Online ISBN: 978-1-4684-5934-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics