Skip to main content

Genetic Analysis of Different Resistance Mechanisms Against the Herbicidal Antibiotic Phosphinothricyl-Alanyl-Alanine

  • Chapter
Genetics and Product Formation in Streptomyces

Summary

Streptomyces viridochromogenes Tü494, the producer of phosphinothricyl-alanyl-alanine (Ptt), is sensitive to its own antibiotic. Two phenotypically discernible Ptt-resistant S. viridochromogenes mutants, ES1 and ES2, were isolated and employed to clone resistance genes. Thus, two different DNA fragments both conferring Ptt resistance could be detected. The DNA regions including the resistance genes were sequenced and the gene products were investigated. The first gene (pat) encodes a phosphinothricin N-acetyltransferase which inactivates the antibiotically effective component phosphinothricin. Following modification of the 5’ region, the pat gene was transferred into plants and phosphinothricin-resistant transgenic plants were obtained. The second gene, a glutamine synthetase (GS) gene mediated Ptt resistance in multi-copy state only. The gene product is heat-labile, and the deduced amino acid sequence was shown to be highly homologous to eucaryotic and to Rhizobiaceae GSII-type enzymes. Therefore the gene was named glnII. Southern hybridizations with different Streptomyces strains suggest that they all carry two types of GS genes, g1nA and g1nII.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alijah, R., Dorendorf, J., Müller, S., Pühler, A., and Wohlleben, W., 1990, Analysis of phosphinothricyl-alanyl-alanine biosynthesis in Streptomyces viridochromogenes Tü494: Characterization of non-producing mutants and isolation of a biosynthetic gene, manuscript in preparation.

    Google Scholar 

  • Almassy, R. J., Janson, C. A., Hamlin, R., Xuong, N. H., and Eisenberg, C., 1986, Novel subunit-subunit interaction in the structure of glutamine synthetase Nature, 323: 304–309.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, W., and A. Pühler, 1988, A family of high-copy-number plasmid vectors with single end-label sites for rapid nucleotide sequencing, Gene, 70: 171–179.

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe, D. C., Saunders, G. R., Bevan, M. W., Maya, A. M., and Harrison, B. D., 1986, Expression of biologically active viral satellite DNA from the nuclear genome of transformed plants, Nature, 321: 446–449.

    Article  CAS  Google Scholar 

  • Bayer, E., Gugel, K. H., Hagele, K., Hagenmeier, H., Jessipow, S., König, W. A., and Zähner, H., 1972, Stoffwechselprodukte von Mikroorganismen: Phosphinothricin und Phosphinothricyl-Alanyl-Alanin, Helv. Chim. Acta, 55: 224–239.

    Article  PubMed  CAS  Google Scholar 

  • Behrmann, I., Hillemann, D., Pühler, A., Strauch, E., and Wohlleben, W., 1990, Overexpression of a Streptomyces viridochromogenes gene (g1nII) encoding an eucaryotic-like glutamine synthetase confers resistance against the antibiotic phosphinothricyl-alanyl-alanine, J. Bacteriol., manuscript submitted

    Google Scholar 

  • Bender, R. A., Janssen, K. A., Resnick, A. D., Blumenberg, M., Foor, F., and Magasanik, B., 1977, Biochemical parameters of glutamine synthetase from Klebsiella aerogenes, J. Bacteriol., 129: 1001–1009.

    PubMed  CAS  Google Scholar 

  • Bozouklian, H., and Elmerich, C., 1986, Nucleotide sequence of the Azospirillum brasilense Sp7 glutamine synthetase structural gene, Biochimie, 68: 1181–1187.

    Article  PubMed  CAS  Google Scholar 

  • Broer, I., Arnold, W., Wohlleben, W., and Pühler, A., 1989, The Phosphinothricin N-Acetyltransferase Gene as a Selection Marker for Plant Genetic Engineering, in: “Proceedings Appl. Plant Mol. Biol.,” G. Galling, ed., pp. 240–246, Zentralstelle far Weiterbildung, Braunschweig.

    Google Scholar 

  • Carlson, T.A., and Chelm, B. K., 1986, Apparent eukaryotic origins of glutamine synthetase II from the bacterium Bradyrhizobium japonicum, Nature, 322: 568–570.

    Article  CAS  Google Scholar 

  • Colombo, G., and Villafranca, J. J., 1986, Aminoacid sequence of Escherichia coli glutamine synthetase deduced from the DNA nucleotide sequence, J. Biol. Chem., 261: 10587–10591.

    PubMed  CAS  Google Scholar 

  • Colonna-Romano, S., Riccio, A., Guida, M., Defez, R., Lamberti, A., Iaccarino, M., Arnold, W., Priefer, U., and Pühler, A., 1987, Tight linkage of g1nA and a putative regulatory gene in Rhizobium leguminosarum, Nucleic Acids Res., 15: 1951–1964.

    Article  PubMed  CAS  Google Scholar 

  • Diddens, H., Zähner, H., Kraas, E., Göring, W., and Jung, G., 1976, On the transport of tripeptide antibiotics in bacteria, Eur. J. Biochem., 66: 11–23.

    Article  PubMed  CAS  Google Scholar 

  • Gebhardt, C., Oliver., J. E., Forde, B. G., Saarelainen, R., and Miflin, B., 1986, Primary structure and differential expression of glutamine synthetase genes in nodules, roots and leaves of Phaseolus vulgaris, EMBO J., 5: 1429–1435.

    PubMed  CAS  Google Scholar 

  • Hayward, B. E., Hussain, A., Wilson, R. H., Lyons, A., Woodcock, V., McIntosh, B., and Harris, T. J. R., 1986, The cloning and nucleotide sequence of cDNA for an amplified glutamine synthetase gene from the Chinese hamster, Nucleic Acids Res., 14: 999–1008.

    Article  PubMed  CAS  Google Scholar 

  • Janson, C. A., Kayne, P. S., Almassy, R. J., Grunstein, M., and Eisenberg D., 1986, Sequence of glutamine synthetase from Salmonella typhimurium and implications for the protein structure, Gene, 46: 297–300.

    Article  PubMed  CAS  Google Scholar 

  • Janssen, P. J., Jones, W. A., Jones, D. T., and Woods, D. R., 1988, Molecular analysis and regulation of the glnA gene of the gram-positive anaerobe Clostridium acetobutylicum, J. Bacteriol., 170: 400–408.

    PubMed  CAS  Google Scholar 

  • Kondo, Y., Shomura, T., Ogawa, Y., Tsuruoka, T., Watanabe, H., Totukawa, K., Suzuki, T., Moriyama, C., Yoshida, J., Inouye, S., and Niída, T., 1973, Studies on a new antibiotic SF-1293, I. Isolation and physicochemical and biological characterization of SF-1293 substances, Sci. Rep. Meiji Seika, 13: 34–41.

    Google Scholar 

  • Labes, G., Simon, R., and Wohlleben, W., 1990, A rapid method for the analysis of plasmid content and copy number in various Streptomyces grown on agar plates, Nucleic Acids Res., 18(8), in press.

    Google Scholar 

  • Lea, P. J., Joy, K. W., Ramos, J. L. and Guerrero, M. G., 1984, The action of 2-amino-4-(methylphosphinyl)-butatonic acid (phosphinothricin) and its 2-oxo-derivative on the metabolism of cyanobacteria and higher plants, Phytochem., 23: 1–6.

    Article  CAS  Google Scholar 

  • Lipman, D. J., and Pearson, W. R., 1985, Rapid and sensitive protein similarity searches, Science 227: 1435–1444.

    Article  PubMed  CAS  Google Scholar 

  • Martin, J. F., and Liras, P., 1989, Organisation and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites, Annu. Rev. Microbiol., 43: 173–206.

    Article  PubMed  CAS  Google Scholar 

  • Muth, G., Nußbaumer, B., Wohlleben, W., and Pühler, A., 1989, A vector system with temperature-sensitive replication for gene disruption and mutational cloning in Streptomycetes, Mol. Gen. Genet., 219: 341–348.

    Article  CAS  Google Scholar 

  • Rawlings, D. E., Jones, W. A., O’Neill, E. G., and Woods, D. R., 1987, Nucleotide sequence of the glutamine synthetase gene and its controlling region from the acidophilic autotroph Thiobacillus ferrooxidans, Gene, 53: 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Staden, R., and McLachlan, A. D., 1982, Codon preference and its use in identifying protein coding regions in long DNA sequences, Nucleic Acid Res., 10: 141–156.

    Article  PubMed  CAS  Google Scholar 

  • Strauch, E., Wohlleben, W., and Pühler, A., 1988, Cloning of a phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Streptomyces lividans and Escherichia coli, Gene, 63: 65–74.

    Article  PubMed  CAS  Google Scholar 

  • Strauch, M. A., Aronson, A. I., Brown, S. W., Schreier, H. J., and Sonenshein, A. L., 1988, Sequence of the Bacillus subtilis glutamine synthetase gene region, Gene, 71: 257–265.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, C. J., Ward, J. M., and Hopwood, D. A., 1980, DNA cloning in Streptomyces: Resistance genes from antibiotic-producing species, Nature, 286: 525–527.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, C. J., Movva, N. R., Tizard, R., Crameri, R., Davies, J., Lauwereys, M., and Botterman, J., 1987, Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus, EMBO 6: 2519–2523.

    CAS  Google Scholar 

  • Tischer, E., DasSarma, S., and Goodman, D. M., 1986, Nucleotide sequence of an alfalfa glutamine synthetase gene, Mol. Gen. Genet., 203: 221–229.

    Article  CAS  Google Scholar 

  • Tuner, N. E., Robinson, S. J., and Haselkorn, R., 1983, Different promoters for the Anabaena glutamine synthetase gene during growth using molecular or fixed nitrogen, Nature, 306: 337–342.

    Article  Google Scholar 

  • Wohlleben, W., Muth, G., Birr, E., and Pühler, A., 1986, A vector system for cloning in Streptomyces and E. coli, in: “Sixth Int. Sym. on Actinomycetes Biology,”G. Szabó, S. Biró, and M. Goodfellow, eds., pp. 99–101, Akadiémiai Kiadó, Budapest.

    Google Scholar 

  • Wohlleben, W., Arnold. W., Broer, I., Hillemann, D., Strauch, E., and Affiler, A., 1988, Nucleotide sequence of the phosphinothricin Nacetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Nicotiana tabacum, Gene, 70: 25–37.

    Article  PubMed  CAS  Google Scholar 

  • Wohlleben, W., Arnold, W., Bissonnette, L., Pelletier, A., Tanguay, A., Roy, P. H., Gamboa, G. C., Barry, G. F., Aubert, E., Davies, J., and Kagan, S. A., 1989, On the evolution of Tn21-like multiresistance transposons: Sequence analysis of the gene (aacCl) for gentamicin acetyltransferase-3-I (AAC(3)-I), another member of the Tn21-based expression cassette, Mol. Gen. Genet., 217: 202–208.

    Article  PubMed  CAS  Google Scholar 

  • Ward, J. M., Janssen, G. R., Kieser, T., Bibb, M. J., Buttner, M. J., and Bibb, M. J., 1986, Construction and characterization of a series of multi-copy promoter probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicators, Mol. Gen. Genet., 203: 468–478.

    Article  PubMed  CAS  Google Scholar 

  • Wray, L. V. Jr., and Fisher, S. H., 1988, Cloning and nucleotide sequence of the Streptomyces coelicolor gene encoding glutamine synthetase, Gene, 71: 247–256.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Wohlleben, W. et al. (1991). Genetic Analysis of Different Resistance Mechanisms Against the Herbicidal Antibiotic Phosphinothricyl-Alanyl-Alanine. In: Baumberg, S., Krügel, H., Noack, D. (eds) Genetics and Product Formation in Streptomyces . Federation of European Microbiological Societies Symposium Series, vol 55. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5922-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5922-7_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5924-1

  • Online ISBN: 978-1-4684-5922-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics