Skip to main content

Antibiotic Resistance: Present State and Prospects

  • Chapter
Book cover Genetics and Product Formation in Streptomyces

Part of the book series: Federation of European Microbiological Societies Symposium Series ((FEMS,volume 55))

  • 209 Accesses

Abstract

The current state of antibiotic research is characterized by contradictory movements, such as decreasing interest of industrial companies in R&D efforts on classical antibiotic screening and further derivatisation of known substances versus increasing interest in new applications and new means of production (e.g. hybrid antibiotics or biotransformations), or booming academical interest in basic research on genetics and regulation of antibiotic biosynthesis and resistance versus slow-down of so-called “defense-research” of companies marketing major antibiotic groups. In this context it is interesting to note that recent progress on our understanding of the mechanisms, evolution and distributing genetic forces of antibiotic resistance is enormous, as is manifested in several reviews and books (Davies and Smith, 1978; Foster, 1983; Piepersberg et al., 1988; Cundliffe, 1989; Wiedemann et al., 1986; Levy and Novick, 1986) and that, in contrast, our knowledge on the interplay between antibiotic action, resistance development and regulation of antibiotic production is very poor. Our current view on the scenery might change considerably, whenever we know more about the origin and function of antibiotics (also “secondary metabolites” or “natural products”) in nature (Zähner et al., 1982; Hütter, 1986; Williams et al., 1989; Davies, 1990; Piepersberg et al., 1988 and this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benveniste, R., and Davies, J., 1973, Aminoglycoside antibiotic -inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria, Proc. Natl. Acad. Sci. USA, 70: 2276.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, S., 1988, The molecular evolution of genes and proteins: a tale of two serines, Nature, 334: 528.

    Article  PubMed  CAS  Google Scholar 

  • Van Buul, C.P.J.J., and van Knippenberg, P.H.,1985, Nucleotide sequence of the ksgA gene of Escherichia coli: comparison of methyltransferases effecting dimethylation of adenosine in ribosomal RNA, Gene, 38: 65.

    Google Scholar 

  • Cohen, G., Shiffman, D., Mevarech, M., and Aharonowitz, Y., 1990, Microbial isopenicillin N synthase genes: structure, function, diversity and evolution, Trends Biotechnol., 8: 105.

    Article  PubMed  CAS  Google Scholar 

  • Cundliffe, E., 1989, How antibiotic-producing organisms avoid suicide, Ann. Rev. Microbiol., 43: 207.

    Google Scholar 

  • Davies, J., 1990, What are antibiotics? Ancient functions for modern activities, Mol. Microbiol., submitted.

    Google Scholar 

  • Davies,J., and Smith,D.I., 1978, Plasmid-determined resistance to antimicrobial agents, Ann. Rev. Microbiol., 32: 469.

    Article  CAS  Google Scholar 

  • Edelman,A.M., Blumenthal, D.K., and Krebs, E.G., 1987, Protein serine/threonine kinases, Ann. Rev. Biochem., 56: 567.

    Google Scholar 

  • Foster,T.J., 1983, Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria, Microbiol. Rev., 47: 361.

    CAS  Google Scholar 

  • O’Hara,K., Kanda,T., Ohmiya,K., Ebisu, T., and Kono, M., 1989, Purification and characterization of macrolide 2’Ophosphotransferase from a strain of Escherichia coli that is highly resistant to erythromycin, Antimicrob. Agents Chemother., 33: 1354.

    Google Scholar 

  • Witter, H., 1986, Overproduction of microbial metabolites, in: “Biotechnology”, Vol. 4., H.J. Rehm, and G. Reed, ed., VCH Verlagsges., Weinheim.

    Google Scholar 

  • Levy,S.B., and Novick,R.P.,1986, “Antibiotic Resistance Genes: Ecology, Transfer, and Expression,” Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Mansouri,K., Pissowotzki, K., Distler, J., Mayer, G., Heinzel, P., Braun, C., Ebert, A., and Piepersberg, W., 1989, Genetics of streptomycin production, in: “Genetics and Molecular Biology of Industrial Microorganisms,” C.L. Hershberger, S.W. Queener, and G. Hegeman,ed., American Society for Microbiology, Washington DC.

    Google Scholar 

  • Miller,J.R., and Ingolia,T.D., 1989, Cloning beta-lactam genes from Streptomyces spp. and fungi, in: “Genetics and Molecular Biology of Industrial Microorganisms,” C.L. Hershberger, S.W. Queener, and G. Hegeman,ed., American Society for Microbiology, Washington DC.

    Google Scholar 

  • Murray, I.A., Gil, J.A., Hopwood, D.A., and Shaw, W.V., 1989, Nucleotide sequence of the chloramphenicol acetyltransferase gene of Streptomyces acrimycini, Gene, 85: 283.

    Article  PubMed  CAS  Google Scholar 

  • Pernodet,J.-L., Boccard, F., Alegre, M.-T., Blondelet-Rouault, M.-H., and Guerineau,M.,1988, Resistance to macrolides, lincosamides and streptogramin type antibiotics due to a mutation in an rRNA operon of Streptomyces ambofaciens, EMBO J., 7: 277.

    Google Scholar 

  • Piepersberg, W., Distler, J., Heinzel, P., and Perez-Gonzalez, J.A., 1988, Antibiotic resistance by modification: Many resistance genes could be derived from cellular control genes in actinomycetes. - A hypothesis, Actinomycetol., 2: 83.

    Google Scholar 

  • Walker,M.S., and Walker, J.B., 1970, Streptomycin biosynthesis and metabolism. Enzymatic phosphorylation of dihydro-

    Google Scholar 

  • streptobiosamine moieties of dihydrostreptomycin(streptidino)phosphate and dihydrostreptomycin, J.Biol. Chem., 245: 6683.

    Google Scholar 

  • Wiedemann, B., Bennett, P.M., Linton, A.H., Sköld, O., and Speller,D.C.E., 1986, “Evolution, Ecology and Epidemiology of antibiotic resistance,” Academic Press, London.

    Google Scholar 

  • Williams,D.H., Stone,M.J., Hauk, P.R., and Rahman, S.K., 1989, Why are secondary metabolites (natural products) biosynthesized?, J. Nat. Prod., 52: 1189.

    Google Scholar 

  • Zähner, H., Drautz, H., and Weber, W., 1982, Novel approaches to metabolite screening, in: “Bioactive microbial products: Search and discovery,” J.D. Bu’Lock, L.J. Nisbet, and D.J. Winstanley, ed., Academic Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Piepersberg, W. (1991). Antibiotic Resistance: Present State and Prospects. In: Baumberg, S., Krügel, H., Noack, D. (eds) Genetics and Product Formation in Streptomyces . Federation of European Microbiological Societies Symposium Series, vol 55. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5922-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5922-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5924-1

  • Online ISBN: 978-1-4684-5922-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics