Skip to main content

Transmitter-Activated Ion Channels as the Target of Chemical Agents

  • Chapter
Neuroreceptor Mechanisms in Brain

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 287))

Abstract

The transmitter-activated ion channels are known to be important target sites of a variety of therapeutic and toxic agents. The GABA-activated chloride channel has been shown to be modulated by general anesthetics, alcohols, and the pyrethroid, cyclodiene and lindane insecticides. The general anesthetics halothane, enflurane and isoflurane greatly augmented the GABA-activated current before desensitization took place, and suppressed it after desensitization at clinically relevant concentrations equivalent to 1-2 minimum alveolar concentrations. The stimulating effect appears to be a mechanism of general anesthesia. It seems that general anesthetics have a specific affinity for the GABA receptor-channel complex. Ethanol also augmented the GABA-activated peak chloride current with little or no effect on the desensitized sustained current. Longer chain alcohols n-butanol, n-hexanol, n-octanol, and n-decanol also exerted the same type of effect, with the potency and efficacy increasing with lengthening of the carbon chain.

The GABA receptor-channel complex has also been shown to be an important target site of certain insecticides. The type II pyrethroids deltamethrin and fenvalerate augmented the GABA-activated peak Chloride current when applied concurrently with GABA, but the effect was diminished as the pyrethroids were applied for long periods of time prior to GABA application. The latter effect might explaln the controversy In the literature regarding the pyrethroid action on the GABA system. The type I pyrethroid allethrin suppressed the GABA-activated peak chloride current when co-applied with GABA. Both types of pyrethroids suppressed the N-methyl-d-aspartate-induced current. Lindane and the cyclodienes dieldrin, endrin, heptachlor-epoxide, and isobenzan suppressed the GABA-activated chloride current. These effects can account for the convulsant action of lindane and the cyclodienes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, N., Inoue, M., and Krishtal, O. A., 1986, ‘Concentration-clamp’ study of γ-aminobutyric-acid-induced chloride current. Kinetics in frog sensory neurones, J. Physiol. (London), 379:171–185.

    CAS  Google Scholar 

  • Akaike, N., Yakushiji, T., Tokutomi, N., and Carpenter, D. O., 1987, Multiple mechanisms of antagonism of γ-aminobutyric acid (GABA) responses, Cell. Mol. Neurobiol., 7:97–103.

    Article  PubMed  CAS  Google Scholar 

  • Bloomquist, J. R., and Soderlund, D. M., 1985, Neurotoxic insecticides inhibit GABA-dependent chloride uptake by mouse brain vesicles, Biochem. Biophys. Res. Comm., 133:37–43.

    Article  PubMed  CAS  Google Scholar 

  • Bormann, J., Hamill, O. P., and Sakmann, B., 1987, Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones, J. Physiol (London)., 385:243–286.

    CAS  Google Scholar 

  • Celentano, J. J., Gibbs, T. T., and Farb, D. H., 1988, Ethanol potentiates GABA-and glycine-induced chloride currents in chick spinal cord neurons, Brain Res., 455:377–380.

    Article  PubMed  CAS  Google Scholar 

  • Chalmers, A. E., Miller, T. A., and Olsen, R. W., 1985, A pharmacological investigation of invertebrate GABA receptors, in: “Neurotox ’85. Neuropharmacology and Pesticide Action,” Univ. Bath, Abstr. pp. 41–42.

    Google Scholar 

  • Crofton, K. M., Reiter, L. W., and Mailman, R. B., 1987, Pyrethroid insecticides and radioligand displacement from the GABA receptor chloride ionophore complex, Toxicol. Letters, 35:183–190.

    Article  CAS  Google Scholar 

  • Franks, N. P., and Lieb, W. R., 1987, What is the molecular nature of general anaesthetic target sites? Trends in Pharmacol. Sci., 8:169–174.

    Article  CAS  Google Scholar 

  • Frey, J., and Narahashi, T., 1990, Pyrethroid insecticides block calcium and NMDA-activated currents in cultured mammalian neurons, Biophys. J., in press.

    Google Scholar 

  • Frey, J., Dichter, M., and Narahashi, T., 1989, Effects of lindane and fenvalerate on GABA-activated chloride currents in cultured hippocampal neurons, The Toxicologist, 9:149.

    Google Scholar 

  • Gammon, D. W., and Sander, G., 1985, Two mechanisms of pyrethroid action: Electrophysiological and pharmacological evidence, NeuroToxicology 6(2):63–86.

    PubMed  CAS  Google Scholar 

  • Ghiasuddin, S. M., and Matsumura, F., 1982, Inhibition of gamma-aminobutyric acid (GABA)-induced chloride uptake by gamma-BHC and heptachlor epoxide, Comp. Biochem. Physiol., 73C:141–144.

    CAS  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflugers Arch., 391:85–100.

    Article  PubMed  CAS  Google Scholar 

  • Haydon, D. A., and Urban, B. W., 1983, The effects of some inhalation anaesthetics on the sodium current of the squid giant axon, J. Physiol. (London), 341:429–439.

    CAS  Google Scholar 

  • Haydon, D. A., and Urban, B. W., 1986, The actions of some general anaesthetics on the potassium current of the squid giant axon, J. Physiol. (London), 373:311–327.

    CAS  Google Scholar 

  • Janoff, A. S., and Miller, K. W., 1982, A critical assessment of the lipid theories of general anaesthetic action, in: “Biological Membranes,” Vol. 4, D. Chapman, ed., Academic Press, London, pp. 417–476.

    Google Scholar 

  • Lawrence, L. J., and Casida, J. E., 1983, Stereospecific action of pyrethroid insecticides on the γ-aminobutyric acid receptor-ionophore complex, Science, 221:1399–1401.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, L. J., Gee, K. W., and Yamamura, H. I., 1985, Interactions of pyrethroid insecticides with chloride ionophore-associated binding sites, NeuroToxicology 6(2):87–98.

    PubMed  CAS  Google Scholar 

  • Lechleiter, J., and Gruener, R., 1984, Halothane shortens acetylcholine receptor channel kinetics without affecting conductance, Proc. Natl. Acad. Sci. USA, 81:2929–2933.

    Article  PubMed  CAS  Google Scholar 

  • Lummis, S. C. R., Chow, S. C, Holan, G., and Johnston, G. A. R., 1987, γ-Aminobutyric acid receptor ionophore complexes: Differential effects of deltamethrin, dichlorodiphenyltrichloroethane, and some novel insecticides in a rat brain membrane preparation, J. Neurochem., 48:689–694.

    Article  PubMed  CAS  Google Scholar 

  • Mancillas, J. R., Siggins, G. R., and Bloom, F. E., 1986, Systemic ethanol: Selective enhancement of responses to acetylcholine and somatostatin in hippocampus, Science, 231:161–163.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, F., and Ghiasuddin, S. M., 1983, Evidence for similarities between cyclodiene type insecticides and picrotoxinin in their action mechanisms, J. Environ. Sci. Health, B18:1–14.

    CAS  Google Scholar 

  • Matsumura, F., and Tanaka, K., 1984, Molecular basis of neuroexcitatory actions of cyclodiene-type insecticides, in: “Cellular and Molecular Neurotoxicology,” T. Narahashi, ed., Raven Press, New York, pp. 225–240.

    Google Scholar 

  • Mehta, A. K., and Ticku, M. K., 1988, Ethanol potentiation of GABAergic transmission in cultured spinal cord neurons involves γ-aminobutyric acidA-gated chloride channels, J. Pharmacol. Exp. Ther., 246:558–564.

    PubMed  CAS  Google Scholar 

  • Miller, K. W., Firestone, L. L., and Forman, S. A., 1987, General anesthetic and specific effects of ethanol on acetylcholine receptors. New York Acad. Sci., 492:71–87.

    Article  CAS  Google Scholar 

  • Nakahiro, M., Yeh, J. Z., Brunner, E., and Narahashi, T., 1989, General anesthetics modulate GABA receptor channel complex in rat dorsal root ganglion neurons, FASEB J., 3:1850–1854.

    PubMed  CAS  Google Scholar 

  • Nakahiro, M., Arakawa, O., and Narahashi, T., 1990, Ethanol and longer chain alcohols enhance GABA-activated Cl-current in rat dorsal root ganglion neurons, FASEB J., in press.

    Google Scholar 

  • Narahashi, T., 1971, Effects of insecticides on excitable tissues, in: “Advances in Insect Physiology,” Vol. 8, J. W. L. Beament, J. E. Treherne and V. B. Wigglesworth, eds., Academic Press, London and New York, pp. 1–93.

    Google Scholar 

  • Narahashi, T., 1976, Effects of insecticides on nervous conduction and synaptic transmisssion, in: “Insecticide Biochemistry and Physiology,” C. F. Wilkinson, ed., Plenum Press, New York, pp. 327–352.

    Google Scholar 

  • Narahashi, T., 1985, Nerve membrane ionic channels as the primary target of pyrethroids, NeuroToxicology, 6(2):3–22.

    PubMed  CAS  Google Scholar 

  • Narahashi, T., 1987, Neuronal target sites of insecticides, in: “Sites of Action for Neurotoxic Pesticides,” R. M. Hollingworth and M. B. Green, eds., American Chemical Society Symposium Series, No. 356, ACS, Washington, DC, pp. 226–250.

    Chapter  Google Scholar 

  • Narahashi, T., 1988, Molecular and cellular approaches to neurotoxicology: Past, present and future, in: “Neurotox ’88: Molecular Basis of Drug and Pesticide Action,” G. G. Lunt, ed., Elsevier, Amsterdam, pp. 269–288.

    Google Scholar 

  • Narahashi, T., 1990, The role of ion channels in insecticide action, in: “Insecticide Action: From Molecule to Organism,” T. Narahashi and J. E. Chambers, eds., Plenum Press, New York, in press.

    Google Scholar 

  • Narahashi, T., and Frey, J. M., 1989, Lindane and cyclodiene insecticides block GABA-activated chloride current in cultured rat hippocampal neurons, Abstr. Soc. Neurosci., 15:1151.

    Google Scholar 

  • Nestoros, J. N., 1980, Ethanol specifically potentiates GABA-mediated neurotransmission in feline cerebral cortex, Science. 209:708–710.

    Article  PubMed  CAS  Google Scholar 

  • Nishio, M., and Narahashi, T., 1988, Ethanol enhances a component of GABA-gated Cl channel current in rat dorsal root ganglion neurons, Soc. Neurosci. Abstr., 14:642.

    Google Scholar 

  • Ogata, N., Vogel, S. M., and Narahashi, T., 1988, Lindane but not deltamethrin blocks a component of GABA-activated chloride channels, FASEB J., 2:2895–2900.

    PubMed  CAS  Google Scholar 

  • Roth, S. H., 1979, Physical mechanisms of anesthesia, Ann. Rev. Pharmacol. Toxicol., 19:159–178.

    Article  CAS  Google Scholar 

  • Ruigt, G. S. F., 1984, Pyrethroids, in: “Comprehensive Insect Physiology, Biochemistry and Pharmacology,” Vol. 12, Chapter 7, G. A. Kerkut and L. I. Gilbert, eds., Pergamon Press, Oxford, pp. 183–263.

    Google Scholar 

  • Seeman, P., 1972, The membrane actions of anesthetics and tranquilizers, Pharmacol. Rev., 24:583–655.

    PubMed  CAS  Google Scholar 

  • Siggins, G. R., Pittman, Q. J., and French, E. D., 1987, Effects of ethanol on CA1 and CA3 pyramidal cells in the hippocampal slice preparation: An intracellular study, Brain Res., 414:22–34.

    Article  PubMed  CAS  Google Scholar 

  • Suzdak, P. D., Schwartz, R. D., Skolnick, P., and Paul, S. M., 1986, Ethanol stimulates γ-aminobutyric acid receptor-mediated chloride transport in rat brain synaptoneurosomes, Proc. Natl. Acad. Sci. USA. 83:4071–4075.

    Article  PubMed  CAS  Google Scholar 

  • Ticku, M. K., Lowrimore, P., and Lehoullier, P., 1986, Ethanol enhances GABA-induced 36Cl-influx in primary spinal cord cultured neurons, Brain Res. Bull., 17:123–126.

    Article  PubMed  CAS  Google Scholar 

  • Woolley, D. W., 1981, The neurotoxicity of DDT and possible mechanisms of action, in: “Mechanisms of Neurotoxic Substances,” K. N. Prasal and A. Vernadakis, eds., Raven Press, New York, pp. 95–141.

    Google Scholar 

  • Wouters, W., and van den Bercken, J., 1978, Action of pyrethroids, Gen. Pharmacol., 9:387–398.

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki, T., and Ishii (Narahashi), T., 1957, Studies on the mechanism of action of insecticides. X. Nervous activity as a factor of development of γ-BHC symptoms in the cockroach, Botyu-Kagaku (Scientific Insect Control), 19:106–112. English translation, Japanese Contributions to the Study of the Insecticide-Resistance Problem. Published by the Kyoto University for the W.H.O., pp. 176–183.

    Google Scholar 

  • Yamasaki, T., and Narahashi, T., 1958, Nervous activity as a factor of development of dieldrin symptoms in the cockroach. Studies on the mechanism of action of insecticides, XVI, Botyu-Kagaku (Scientific Insect Control), 23:47–54.

    Google Scholar 

  • Yasui, S., Ishizuka, S., and Akaike, N., 1985, GABA activates different types of chloride-conducting receptor-ionophore complexes in a dose-dependent manner, Brain Res., 344:176–180.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Narahashi, T. (1991). Transmitter-Activated Ion Channels as the Target of Chemical Agents. In: Kito, S., Segawa, T., Olsen, R.W. (eds) Neuroreceptor Mechanisms in Brain. Advances in Experimental Medicine and Biology, vol 287. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5907-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5907-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5909-8

  • Online ISBN: 978-1-4684-5907-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics