Skip to main content

Intramembrane Particles in the Postsynaptic Membranes of the S-, F-, and C-Type Synapses by Freeze-Fracturing, and Deep-Etching Studies on the Xenopus Spinal Cord

  • Chapter
Neuroreceptor Mechanisms in Brain

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 287))

  • 130 Accesses

Abstract

In the CNS, the S-, F-and C~type of synapses used to be classified with TEM based on the appearance of synaptic vesicles and the specialization of synaptic membranes (Charlton and Gray, 1966; Uchizono, 1975; Watanabe/ 1981): The S-type, or Gray’s type I, synapse has spherical synaptic vesicles and more or less electron-dense substances in the subsynaptic cytoplasm. The F-type, or Gray’s type II, has flattened vesicles and symmetrically thickened pre-and postsynaptic membranes. The C-type is remarkable because of the subsurface cistern in the subsynaptic cytoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonov, S, M., Kalinina, N. I., Kurchavyj, G. G., Magazanik, L. G., Shu-pliakov, 0. V., and Vesselkin, N. P., 1990, Identification of two types of excitatory monosynaptic inputs in frog spinal motoneurons, Neurosci. Let., 109:82–87.

    Article  CAS  Google Scholar 

  • Bixby, J. L., and Spitzer, N. C., 1984, The appearance and development of neurotransmitter sensitivity in Xenopus embryonic spinal neurons in vitro, J. Physiol., 353:143–155.

    PubMed  CAS  Google Scholar 

  • Charlton, B. T., and Gray, E. G., 1966, Comparative electron microscopy of synapses in the vertebral spinal cord, J. Cell Sci., 1:67–80.

    PubMed  CAS  Google Scholar 

  • Davidoff, M. S., and Irintchev, A. P., 1986, Acetylcholinesterase activity and type C synapses in the hypoglossal, facial and spinal-cord motor nuclei of rats, An electron-microscopy study, Histochemistry, 84:515–524.

    Article  PubMed  CAS  Google Scholar 

  • Gulley, R. L., Landis, D. M. D., and Reese, T. S., 1978, Internal organization of membranes at end bulbs of Held in the anteroventral cochlear nucleus, J. Comp. Neurol., 180:707–742.

    Article  PubMed  CAS  Google Scholar 

  • Heuser, J. E., and Reese, T. S., 1977, Structure of synapse, in: “The handbook of physiology, Section 1; The nervous system”, Americal Physiological Society, Bethesda, vol 1(1), pp.261–294.

    Google Scholar 

  • Möhler, H., Schoch, P., Richards, J. G., Häring, P., and Takacs, B., 1987, Structure and location of a GABA-A receptor complex in the central nervous system, J. Receptor Res., 7:617–628.

    Google Scholar 

  • Nistri, A., and Berti, C., 1983, Caffeine-induced potentiation of GABA effects on frog spinal cord: An electrophysiological study, BrainRes., 258:263–270.

    Article  PubMed  CAS  Google Scholar 

  • Raviola, E., and Gilula, N. B., 1975, Intramembrane organization of specialized contacts in the outer plexiform layer of retina, J. Cell Biol., 65:192–222.

    Article  PubMed  CAS  Google Scholar 

  • Sandri, C., Van Buren, J. M., and Akert, K., 1982, Membrane morphology of the vertebrate nervous system, A study with freeze~etch technique, Prog. Brain Res., (2nd revised edition), 46:121–155.

    Google Scholar 

  • Simpson, J. I., 1976, Functional synaptology of the spinal cord, in: “Frog Neurobiology”, R. Llinás and W. Precht, eds., Springer-Verlag, Berlin, pp.728–749.

    Chapter  Google Scholar 

  • Tonosaki, A., and Yamamoto, T.-Y., 1974, Double-replicating method for the freeze-fractured retina, J. Ultrastruct. Res., 47:86–94.

    Article  PubMed  CAS  Google Scholar 

  • Uchizono, K., 1975, “Excitation and inhibition synaptic morphology”, Igaku Shoin Ltd., Tokyo.

    Google Scholar 

  • Watanabe, H., 1981, Development of axosomatic synapses of the Xenopusspinal cord with special reference to subsurface cisterns and C-type synapses, J. Comp. Neurol., 200:323–338.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, H., and Yamamoto, T.-Y., 1981, Freeze-fracture study on three types of synapses in the Xenopus spinal cord, J. Comp. Neurol., 198:249–263.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, H., Washioka, H., and Tonosaki, A., 1986, “Cholinergic” postsynaptic membranes of bullfrog sympathetic ganglia: Electron microscopy of thin sections and freeze-fracture replicas, Anat. Rec., 214:82–88.

    Article  PubMed  CAS  Google Scholar 

  • Wenthold, R. J., Parakkal, M. H., Oberdorfer, M. D., and Altschuler, R. A., 1988, Glycine receptor immunoreactivity in the ventral cochlear nucleus of the guinea pig, J. Comp. Neurol., 276:423–435.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Watanabe, H., Washioka, H., Tonosaki, A. (1991). Intramembrane Particles in the Postsynaptic Membranes of the S-, F-, and C-Type Synapses by Freeze-Fracturing, and Deep-Etching Studies on the Xenopus Spinal Cord. In: Kito, S., Segawa, T., Olsen, R.W. (eds) Neuroreceptor Mechanisms in Brain. Advances in Experimental Medicine and Biology, vol 287. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5907-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5907-4_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5909-8

  • Online ISBN: 978-1-4684-5907-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics