Skip to main content

Regulation of the Nicotinic Acetylcholine Receptor by Serine and Tyrosine Protein Kinases

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 287))

Abstract

Neurotransmitter receptors play a central role in the process of signal transduction across synapses between neurons. Neurotransmitters released from the presynaptic neuron diffuse across the synaptic cleft and bind to neurotransmitter receptors in the membrane of the postsynaptic neuron. The neurotransmitter receptors then transduce this signal across the postsynaptic membrane either by directly activating ion channels or by regulating the level of intracellular second messengers in the postsynaptic neuron. Because of the essential role of neurotransmitter receptors in synaptic transmission, the short and long term modulation of neurotransmitter receptor function could be an extremely effective mechanism for the regulation of synaptic plasticity. What are the molecular mechanisms that may be involved in the modulation of neurotransmitter receptor function? Studies on the regulation of cellular metabolism over the past four decades have shown that protein phosphorylation is the primary mechanisms in the regulation of almost all cellular processes (Edelman et al, 1987, Nairn et al, 1985, Hunter et al, 1985).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamo S, Zani BM, Nerri C., Senni MI, Molinare M, and Eusebi F. (1985). Acetylcholine stimulates phosphatidylinositol turnover at nicotinic receptors of cultured myotubes. FEBS Lett. 190: 161–164.

    Article  PubMed  CAS  Google Scholar 

  • Albuquerque EX, Deshpande SS, Aracava Y, Alkondon M, Daly JW (1986). A possible involvement of cyclic AMP in the expression of desensitization of the nicotinic acetylcholine receptor: a study with forskolin and its analogs. FEBS Lett 199:113–120.

    Article  PubMed  CAS  Google Scholar 

  • Changeux J-P, Devillers-Thiery A, Chemouilli P (1984). Acetylcholine receptor: an allosteric protein. Science 225:1333–1345.

    Article  Google Scholar 

  • Claudio T, Ballivet M, Patrick J, Heinemann S (1983). Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor γ subunit. Proc Natl Acad Sci USA 80:1111–1115.

    Article  PubMed  CAS  Google Scholar 

  • Cohen P (1989). The structure and regulation of protein phosphatases, in “Annual Review of Biochemistry,” Richardson CC, Abelson JN et al, eds., Annual Reviews Inc., Palo Alto, CA.

    Google Scholar 

  • Devillers-Thiery A, Giraudat J, Benaboulet M, Changeux J-P (1983). Complete mRNA coding sequence of the acetylcholine-binding α-subunit of Torpedo marmorata acetylcholine receptor: a model for the transmembrane organization of the polypeptide chain. Proc Natl Acad Sci USA 80:2067–2071.

    Article  PubMed  CAS  Google Scholar 

  • Edelman AM, Blumenthal DK, Krebs EG (1987). Protein serine/threonine kinases. Annu Rev Biochem 56:567–613.

    Article  PubMed  CAS  Google Scholar 

  • Eusebi F, Molinaro M, Zani BM (1985). Agents that activate protein kinase C reduce acetylcholine sensitivity in cultured myotubes. J Cell Biol 100:1339–1342.

    Article  PubMed  CAS  Google Scholar 

  • Finer-Moore J, Stroud RM (1984). Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. Proc Natl Acad Sci USA 81:155–159.

    Article  PubMed  CAS  Google Scholar 

  • Fontaine B, Klarsfeld A, Hokfelt T, Changuex J-P (1986). Calcitonin gene-related peptide, a peptide present in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes. Neurosci Lett 71:59–65.

    Article  PubMed  CAS  Google Scholar 

  • Giraudat J, Dennis M, Heidmann T, Chang J-Y, Changeux J-P (1986). Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptors: serine-262 of the δ is labeled by [3H] chlorpromazine. Proc Natl Acad Sci USA 83:2719–2723.

    Article  PubMed  CAS  Google Scholar 

  • Heilbronn H, Eriksson R, Salmansson R (1985). Regulation of the nicotinic acetylcholine receptor by phosphorylation. In Changeux, Hucho, Maelicke, and Neumann, (eds): “Molecular Basis of Nerve Activity,” Berlin: Walter de Gruyter, pp 237–250.

    Google Scholar 

  • Hemmings HC, Nairn AC, McGuinness TL, Huganir RL, Greengard P (1989). Role of protein phosphorylation in neuronal signal transduction. FASEB 3:1583–1592.

    CAS  Google Scholar 

  • Hopfield JF, Tank DW, Greengard P, Huganir RL. (1988). Functional modulation of the nicotinic acetylcholine receptor by tyrosine phosphorylation. Nature 336:677–680.

    Article  PubMed  CAS  Google Scholar 

  • Hucho F, Oberthur W, Lottspeich, F (1986). The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices M II of the receptor subunits. FEBS Lett 205:137–142.

    Article  PubMed  CAS  Google Scholar 

  • Huganir RL, Albert KA, Greengard P (1983). Phosphorylation of the nicotinic acetylcholine receptor by Ca2+/phospholipid-dependent protein kinase, and comparison with its phosphorylation by cAMP-dependent protein kinase. Soc Neurosci Abstr 9:578.

    Google Scholar 

  • Huganir RL, Delcour AH, Greengard P, Hess GP (1986). Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature 321:774–776.

    Article  PubMed  CAS  Google Scholar 

  • Huganir RL, Greengard P (1983). cAMP-dependent protein kinase phosphorylates the nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 80:1130–1134.

    Article  PubMed  CAS  Google Scholar 

  • Huganir RL, Greengard P (1987). Regulation of receptor function by protein phosphorylation. TIPS 8:472–477.

    CAS  Google Scholar 

  • Huganir RL, Miles K, Greengard P (1984). Phosphorylation of the nicotinic acetylcholine receptor by an endogenous tyrosine-specific protein kinase. Proc Natl Acad Sci USA 81:6963–6972.

    Article  Google Scholar 

  • Huganir RL, Racker E (1982). Properties of proteoliposimes reconstituted with acetylcholine receptor from Torpedo californica. J Biol Chem 257:9372–9378.

    PubMed  CAS  Google Scholar 

  • Hunter T, Cooper JA (1985). Protein-tyrosine kinases. Annu Rev Biochem 54:897–930.

    Article  PubMed  CAS  Google Scholar 

  • Imoto K, Busch C, Sakmann B, Mishina M, Konno T, Nakai J, Bujo H, Mori Y, Fukuda K, Numa S. (1988). Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335:645–648.

    Article  PubMed  CAS  Google Scholar 

  • Kao PN, Dwork AJ, Kaldany RRJ, Silver ML, Wideman J, Stein S, Karlin A (1984). Identification of the α subunit Half-cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J Biol Chem 259:11662–11665.

    PubMed  CAS  Google Scholar 

  • Kobayashi H. Hashimoto K, Sakuma J, Takami K, Tohyama M, Izumi F, Yoshida H (1987). Calcitonin gene-related peptide stimulates adenylate cyclase activity in rat striatal muscle. Experientia 43:314–316.

    Article  PubMed  CAS  Google Scholar 

  • Laufer R, Changeux J-P (1989). Calcitonin gene-related peptide and cyclic AMP stimulate phosphoinositide turnover in skeletal muscle cells: interaction between two second messenger systems. J Biol Chem 264: 2683–2689.

    PubMed  CAS  Google Scholar 

  • Laufer R, Changeux J-P (1987). Calcitonin gene-related peptide elevates cyclic AMP levels in chick skeletal muscle: possible neurotrophic role for a coexisting neuronal messenger. EMBO J 6:901–906.

    PubMed  CAS  Google Scholar 

  • Leonard RJ, Labarca CG, Charnet P, Davidson N., Lester HA (1988). Evidence that the M2 Membrane-spanning region lines the ion channel pore of the nicotinic receptor. Science 242:1578–1581.

    Article  PubMed  CAS  Google Scholar 

  • Matteoli M, Haimann C., Torri-Tarelli F, Polak JM Ceccarelli B, DeCamilli P (1988). Differential effect of α-latrotoxin on exocytosis from small synaptic vesicles and from large dense-core vesicles containing calcitonin gene-related peptide at the frog neuromuscular junction. Proc Natl Acad Sci USA 85:7366–7370.

    Article  PubMed  CAS  Google Scholar 

  • McHugh EM, McGee, Jr R (1986). Direct anesthetic-like effects of forskolin on the nicotinic acetylcholine receptors of PC12 cells. J Biol Chem 261:3103–3106.

    PubMed  CAS  Google Scholar 

  • Middleton P, Jaramillo F, Scheutze SM (1986). Forskolin increases the rate of acetylcholine receptor desensitization at rat soleus endplates. Proc Natl Acad Sci USA 83:4967–4971.

    Article  PubMed  CAS  Google Scholar 

  • Middleton P, Rubin LL, Schuetze SM (1988). Modulation of acetylcholine receptor desensitization in rat myotubes. J Neurosci 8:3405–3412.

    PubMed  CAS  Google Scholar 

  • Miles K, Anthony DT, Rubin LL, Greengard P, Huganir RL (1987). Regulation of nicotinic acetylcholine receptor phosphorylation in rat myotubes by forskolin and cAMP. Proc Natl Acad Sci USA 84:6591–6595.

    Article  PubMed  CAS  Google Scholar 

  • Miles K, Greengard P, Huganir RL (1989). Calcitonin gene-related peptide regulates phosphorylation of the nicotinic acetylcholine receptor in rat myotubes. Neuron 2: 1517–1524.

    Article  PubMed  CAS  Google Scholar 

  • Miles K, Huganir RL (1988). Regulation of Nicotinic Acetylcholine Receptors by Protein Phosphorylation. Molecular Neurobiology 2:91– 124.

    Article  PubMed  CAS  Google Scholar 

  • Miles K, Greengard P, Huganir RL (1990). Manuscript in preparation.

    Google Scholar 

  • Mulle C, Benoit P, Pinset C, Roa M, Changuex J-P (1988). Calcitonin gene-related peptide enhances the rate of desensitization of the nicotinic acetylcholine receptor in cultured mouse muscle cell. Proc Natl Acad Sci USA 85:5728–5732.

    Article  PubMed  CAS  Google Scholar 

  • Nairn AC, Hemmings HC, Greengard P (1985). Protein kinases in the brain. Annu Rev Biochem 54:931–976.

    Article  PubMed  CAS  Google Scholar 

  • New HV, and Mudge AW (1986). Calcitonin gene-related peptide regulates muscle acetylcholine receptor synthesis. Nature 323:809–811.

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Takahashi H, Tanabe T, Toyosato M, Furutani Y, Hirose T, Asai M, Inayama S, Miyata T, Numa S (1982). Primary structure of α-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299:793–797.

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Takahashi H, Tanabe T, Toyosato M, Kikyotani S, Furutani Y, Hirose T, Takashima H, Inayama S, Miyata T, Numa S (1983). Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302:528–532.

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Takahashi H, Tanabe T, Toyosato M, Kikyotani S, Hirose T, Asai M, Takashima H, Inayama S, Miyata T, Numa S (1983). Primary structures of ß and δ subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature 301:251–255.

    Article  PubMed  CAS  Google Scholar 

  • Qu Z, Moritz E, Huganir RL (1990). Regulation of tyrosine phosphorylation of the nicotinic acetylcholine receptor at the rat neuromuscular junction. Neuron, in press.

    Google Scholar 

  • Raftery MA, Hunkapiller MW, Strader CD, Hood LE (1980). Acetylcholine receptor: complex of homologous subunits. Science 208:1454–1457.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds JA, Karlin A (1978). Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica. Biochemistry 17:2035–2038.

    Article  PubMed  CAS  Google Scholar 

  • Ross A, Rapuano M, and Prives J. (1988). Induction of phosphorylation and cell surface redistribution of acetylcholine receptors by phorbol ester and carbamylcholine in cultured chick muscle cells. J Cell Biol 107:1139–1145

    Article  PubMed  CAS  Google Scholar 

  • Ross A, Rapuano M, Schmidt J, Prives J (1987). Phosphorylation and assembly of nicotinic acetylcholine receptor subunits in cultured chick muscle cells. J Biol Chem 262:14640–14647.

    PubMed  CAS  Google Scholar 

  • Safran A, Eisenberg RS, Neumann D, Fuchs S (1987). Phosphorylation of the acetylcholine receptor by protein kinase C and identification of the phosphorylation site within the receptor δ subunit. J Biol Chem 262:10506–10510.

    PubMed  CAS  Google Scholar 

  • Smilowitz H, Hadjian RA, Dwyer J, Feinstein MB (1981). Regulation of acetylcholine receptor phosphorylation by calcium and calmodulin. Proc Natl Acad Sci USA 78:4708–4712.

    Article  PubMed  CAS  Google Scholar 

  • Smith MM, Merlie JP, Lawrence, Jr JC, (1987). Regulation of phosphorylation of nicotinic acetylcholine receptors in mouse BC3H1 myocytes. Proc Natl Acad Sci USA 84:6601–6605.

    Article  PubMed  CAS  Google Scholar 

  • Smith MM, Merlie JP, Lawrence Jr. JC (1989). Ca+2-dependent and cAMP-dependent control of nicotinic acetylcholine receptor phophorylation in muscle cells. J Biol Chem 264: 12813–12819.

    PubMed  CAS  Google Scholar 

  • Takami K, Hashimito K, Uchida S, Tohyama M, Yashida H. (1986). Effect of calcitonin gene-related peptide on the cyclic AMP level of isolated mouse diaphragm. Jap J Pharmacol 42:345–350.

    Article  PubMed  CAS  Google Scholar 

  • Tank DE, Huganir RL. Greenard P, Webb WW (1983). Patch-recorded single-channel currents of the purified and reconstituted Torpedo acetylcholine receptor. Proc Natl Acad Sci USA 80:5129–5133.

    Article  PubMed  CAS  Google Scholar 

  • Wagoner PK, Pallotta BS (1988). Modulation of acetylcholine receptor desensitization by forskolin is independent of cAMP. Science 240:1655–1657.

    Article  PubMed  CAS  Google Scholar 

  • Yee GH, Huganir RL (1987). Determination of the sites of cAMP-dependent phosphorylation on the nicotinic acetylcholine receptor. J Biol Chem 262: 16748–16753.

    PubMed  CAS  Google Scholar 

  • Zavoico GB, Comerci C, Subers E, Egon JJ, Huang CK, Feinstein MB, Smilowitz H (1984). cAMP, not Ca2+/calmodulin, regulates the phosphorylation of acetylcholine receptor in Torpedo californica electroplax. Biochim Biophys Acta 770:225–229.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Huganir, R.L. (1991). Regulation of the Nicotinic Acetylcholine Receptor by Serine and Tyrosine Protein Kinases. In: Kito, S., Segawa, T., Olsen, R.W. (eds) Neuroreceptor Mechanisms in Brain. Advances in Experimental Medicine and Biology, vol 287. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5907-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5907-4_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5909-8

  • Online ISBN: 978-1-4684-5907-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics