Skip to main content

Serotonin Receptor Subtypes in Brain: Ligand Binding Properties and Coupling with G Proteins

  • Chapter
Neuroreceptor Mechanisms in Brain

Abstract

Serotonin (5-hydroxytryptamine; 5-HT) receptors are classified as 5-HT1, 5-HT2 and 5-HT3, and evidence is emerging to suggest heterogeneity within 5-HT1 receptor category, e.g., 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D receptors (Peroutka, 1988). Several GTP-binding proteins (G proteins) in mammalian brain were identified, e.g., α52/45, α41, α40, α39 (α-subunits of Gs, Gi1, Gi2 and Go) (Katada et al., 1986a; Katada et al., 1987; Itoh et al., 1988; Casey and Gliman, 1988) and several G proteins with low molecular weight (20 ~ 30 kDa), including 24-kDa G protein (24 K-G) (Katada and Ui, 1988), ADP-ribosylation factor (ARF) (Kahn and Gliman, 1986), a substrate of botulinum toxin (Gb, rho product) (Narumiya et al., 1988) and other small molecular G proteins (smg) (Takai et al., 1989). N-ethylmaleimide (NEM) has been used as a useful probe to alkylate sulfhydryl residues in receptors and G proteins involved in their coupling (Katada et al., 1986b; Kitamura and Nomura, 1987; Nomura et al., 1988). To classify 5-HT receptor subtypes in the CNS from binding characteristics and the aspect of coupling properties of these receptors with G proteins, we here examined the effects of GTPyS, NEM and several 5-HT receptor ligands on specific binding of [3H]8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (5-HT1A), [125I]iodocyanopindolol (ICYP) (5-HT1B), [ 3H]mesulergine (5-HT1C), [3H] 4-bromo-2,5-dimethoxyphenyliso-propylamine (DOB) (5-HT2) and [3H]ketanserin (5-HT2) to crude synaptic membranes of rat brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berstein, G., Haga, K., Haga, T., and Ichiyama, A., 1988, Agonist and antagonist binding of muscarinic acetylcholine receptors purified from porcine brain: interconversion of high-and low-affinity sites by sulfhydryl reagents, J. Neurochem. 50:1687–1694.

    Article  PubMed  CAS  Google Scholar 

  • Bouhelal, R., Smounya, L., and Bockaert, J., 1988, 5-HT1B receptors are negatively coupled with adenylate cyclase in rat substantia nigra, Eur. J. Pharmacol., 151:189–196.

    Article  PubMed  CAS  Google Scholar 

  • Bunzow, J. R., Van Tol, H. H. M., Grandy, D. K., Albert, P.,Salon, J., Christie, M., Machida, C. A., Neve, K. M., and Civelli O.,, 1988, Cloning and expression of a rat D2 dopamine receptor cDNA, Nature 336:783–787.

    Article  PubMed  CAS  Google Scholar 

  • Casey, P. J., and Gilman, A. G., 1988, G protein involvement in receptor-effector coupling, J. Biol. Chem., 263:2577–2580.

    PubMed  CAS  Google Scholar 

  • Cheng, Y. C., and Prusoff, W. H., 1973, Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction, Biochem. Pharmacol., 22:3099–3108.

    Article  PubMed  CAS  Google Scholar 

  • Conn, P. J., and Sanders-Bush, E., 1985, Serotonin-stimulated phospho-inositide turnover; mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions, J. Pharmacol. Exp. Ther., 234:195–203.

    PubMed  CAS  Google Scholar 

  • Conn, P. J., Sanders-Bush, E., Hoffman, B. J., and P. R. Hartig, P. R., 1986, A unique serotonin receptor in choroid plexus is linked to phosphatidylinositol turnover, Proc. Natl. Acad. Sci. USA 83:4086– 4088.

    Article  PubMed  CAS  Google Scholar 

  • Cotecchia, S., Schwinn, D. A., Randall, R. R., Lefkowitz, R. J., Caron, M. G., and Kobilka, B. K., 1988, Molecular cloning and expression of the cDNA for the hamster α1-adrenergic receptor, Proc. Natl. Acad. Sci. USA, 85:7159–7163.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, R. A. F., Sigal, I. S., Candelore, M. R., Register, R. B., Scattergcod, W., Rands, E., and Strader, C. D., 1987, Structural features required for ligand binding to the β-adrenergic receptor, EMBO J., 6:3269–3275.

    PubMed  CAS  Google Scholar 

  • Fargin, A., Raymond, J. R., Lohse, M. J., Kobilka, B. K., Caron, M. G., and Lefkowitz, R. J., 1988, The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HTlA receptor, Nature, 335:358–360.

    Article  PubMed  CAS  Google Scholar 

  • Hartig, P. R., 1989, Molecular biology of 5-HT receptors, Trends Pharmacol. Sci., 10:64–69.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer, D., Engel G., and Kalkman, H. O., 1985, Characterization of the 5-HT1B recognition site in rat brain: binding studies with (-)-[125I]iodocyanopindolol, Eur. J. Pharmacol., 118:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer, D., 1988, Molecular pharmacology and biology of 5-HT1c receptors, Trends Pharmacol. Sci. 9:89–94.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer, D., and Schoeffter, P., 1988, 5-HT-1D receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in calf substantia nigra, Eur. J. Pharmacol., 147:145–147.

    Article  PubMed  CAS  Google Scholar 

  • Imai, S., Kitamura, Y., and Nomura, Y., 1988, Effects of N-ethylmaleimide on the coupling of 5-HT receptor subtypes with GTP-binding protein in rat brain, Bulletin of Japanese Neurochemical Society, 27:132– 133 (in Japanese).

    Google Scholar 

  • Imai, S., Kitamura, Y., and Nomura, Y., 1989, Classification of 5-hydroxytryptamine receptor subtypes from binding characteristics in rat brain membranes, Bulletin of Japanese Neurochemica1 Society, 28:184–185 (in Japanese).

    Google Scholar 

  • Itoh, H., Katada, T., Ui, M., Kawasaki, H., Suzuki, K., and Kaziro, Y., 1988, Identification of three pertussis toxin substrates (41, 40 and 39 kDa proteins) in mammalian brain, FEBS Lett., 230:85–89.

    Article  PubMed  CAS  Google Scholar 

  • Julius, D., MacDermott, A. B., Axel, R., and Jessell, T. M., 1988, Molecular characterization of a functional cDNA encoding the serotonin 1c receptor, Science, 241:558–564.

    Article  PubMed  CAS  Google Scholar 

  • Kahn, R. A., and Gilman, A. G., 1986, The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein, J. Biol. Ghem., 261:7906–7911.

    CAS  Google Scholar 

  • Katada, T., Oinuma, M., and Ui, M., 1986a, Two guanine nucleotide-binding proteins in rat brain serving as the specific substrate of islet-activating protein, pertussis toxin: interaction of the α-subunits with βγ-subunits in development of their biological activities, J. Biol. Chem., 261:8182–8191.

    PubMed  CAS  Google Scholar 

  • Katada, T., Kurose, H., Oinuma, M., Hoshino, S., Shinoda, M., Amanuma, S., and Ui, M., 1986b, Role of GTP-binding proteins in coupling of receptors and adenylate cyclase, in: “Gunma Symposia on Endocrinology, Vol. 23”, VNU Science Press BV, Tokyo, p.45–67.

    Google Scholar 

  • Katada, T., Oinuma, M., Kusakabe, K., and Ui, M., 1987, A new GTP-binding protein in brain tissues serving as the specific substrate of islet-activating protein, pertussis toxin, FEBS Lett., 213:353–358.

    Article  PubMed  CAS  Google Scholar 

  • Katada, T., and Ui, M., 1988, Unique properties of a new GTP-binding protein with a molecular mass of 24,000 daltons purified from porcine brain membranes, in: “Cold Spring Harbor Symposia on Quantitative Biology, Vol. 53; Molecular Biology of Signal Transduction”, Cold Spring Harbor Laboratory, New York, p.255–261.

    Google Scholar 

  • Kitamura, Y., and Nomura, Y., 1987, Uncoupling of rat cerebral cortical α2-adrenoceptors from GTP-binding proteins by N-ethylmaleimide, J. Neurochem., 49:1894–1901.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura, Y., Imai, S., and Nomura, Y., 1988, Coupling of 5-HT1A receptor with GTP-binding protein in rat brain membranes, Japan. J. Pharmacol., 46:251P.

    Google Scholar 

  • Kobilka, B. K., Matsui, H., Kobilka, T. S., Yang-Feng, T. L., Francke, U., Caron, M. G., Lefkowitz, R. J., and Regan, J. W., 1987a, Cloning, sequencing, and expression of the gene coding for the human platelet α2-adrenergic receptor, Science, 238:650–656.

    Article  PubMed  CAS  Google Scholar 

  • Kobilka, B. K., Frielle, T., Collins, S., Yang-Feng, T., Kobilka, T. S., Francke, U., Lefkowitz, R. J., and Caron, M. G., 1987b, An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins, Nature, 329:75–79.

    Article  PubMed  CAS  Google Scholar 

  • Kobilka, B. K., Kobilka, T. S., Daniel, K., Regan, J. W., Caron, M. G., and Lefkowitz, R. J., 1988, Chimeric α2-, β2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity, Science, 240:1310–1316.

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz, R. J., and Caron, M. G., 1988, Adrenergic receptors: models for the study of receptors coupled to guanine nucleotide regulatory proteins, J. Biol. Chem., 263:4993–4996.

    PubMed  CAS  Google Scholar 

  • Lyon, R. A., Davis, K. H., and Titeler M., 1987, 3H-DOB (4-bramo-2,5-dimethoxyphenylisopropylamine) labels a guanyl nucleotide-sensitive state of cortical 5-HT2 receptors, Mol. Pharmacol., 31:194–199.

    PubMed  CAS  Google Scholar 

  • Munson, P. J., and Rodbard D., 1980, LIGAND: a versatile computerized approach for characterization of ligand-binding systems, Anal. Biochem., 107:220–239.

    Article  PubMed  CAS  Google Scholar 

  • Narumiya, S., Sekine, A., and Fujiwara, M., 1988, Substrate for botulinum ADP-ribosyltransferase, Gb, has an amino acid sequence homologous to a putative rho gene product, J. Biol. Chem. 263:17255–17257.

    PubMed  CAS  Google Scholar 

  • Nomura, Y., Kaneko, S., Kato, K., Yamagishi, S., and Sugiyama, H., 1987, Inositol phosphate formation and chloride current responses induced by acetylcholine and serotonin through GTP-binding proteins in Xenopus oocyte after injection of rat brain messenger RNA, Mol. Brain Res., 2:113–123.

    Article  CAS  Google Scholar 

  • Nomura Y., Kitamura, Y., and Kawata, K., 1988, Function and mechanism of the interaction of GTP-binding proteins with α2-adrenoceptors in the brain, in: “Neurotransmitters and Signal Transduction,” Plenum, New York, p.301–311.

    Google Scholar 

  • Nukada, T., Haga, T., and Ichiyama, A., 1983, Muscarinic receptors in porcine caudate nucleus: II. different effects of N-ethylmaleimide on [3H]cis-methyldioxolane binding to heat-labile (guanyl nucleotide-sensitive) sites and Heat-stable (guanyl nucleotide-insensitive) sites, Mol. Pharmacol. 24:374–379.

    PubMed  CAS  Google Scholar 

  • Offord, S. J., Ordway, G. A., and Frazer, A., 1988, Application of [125 I]-iodocyanopindolol to measure 5-hydroxytryptamine1B receptors in the brain of the rat, J. Pharmacol. Exp. Ther., 244:144–153.

    PubMed  CAS  Google Scholar 

  • Okada, F., Tokumitsu, Y., and Nomura, Y., 1989, Pertussis toxin attenuates 5-hydroxytryptamine1A receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in rat hippocampal membranes, J. Neurochem., 52:1566–1569.

    Article  PubMed  CAS  Google Scholar 

  • Pazos, A., Hoyer D., and Palacios, J. M., 1984, The binding of serotonergic ligands to the porcine choroid plexus: characterization of a new type of serotonin recognition site, Eur. J. Pharmacol., 106:539–546.

    Article  PubMed  CAS  Google Scholar 

  • Pedigo, N. W., Yamamura, H. I., and Nelson, D. L., 1981, Discrimination of multiple [ 3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain, J. Neurochem., 36:220–226.

    Article  PubMed  CAS  Google Scholar 

  • Peroutka, S. J., and Snyder, S. H., 1979, Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol, Mol. Pharmacol., 16:687–699.

    PubMed  CAS  Google Scholar 

  • Peroutka, S. J., 1988, 5-Hydroxytryptamine receptor subtypes: molecular, biochemical and physiological characterization, Trends Neurosci., 11:496–500.

    Article  PubMed  CAS  Google Scholar 

  • Pritchett, D. B., Bach, A. W., Wozny, M., Taleb, O., Toso, R. D., Shih, J. C., and Seeburg, P. H., 1988, Structure and functional expression of cloned rat serotonin 5-HT-2 receptor, EMBO J., 7:4135–4140.

    PubMed  CAS  Google Scholar 

  • Stratford, C. A., Tan, G. L., Hamblin, M. W., and Ciaranello, R. D., 1988, Differential inactivation and G protein reconstitution of subtypes of [3H]5-hydroxytryptamine binding sites in brain, Mol. Pharmacol., 34:527–536.

    PubMed  CAS  Google Scholar 

  • Takai, Y., Kikuchi, A., Yamashita, T., Yamamoto, K., Kawata, M., and Hoshijima, M., 1989, Small molecular weight GTP-binding proteins from bovine brain membranes: purification, characterization and possible functions, in: “Physiology and Pharmacology of Transmembrane Signalling,” Elsevier, Amsterdam, p.77–86.

    Google Scholar 

  • Watling, K. J., 1988, Radioligand binding studies identify 5-HT3 recognition sites in neuroblastoma cell lines and mammalian CNS, Trends Pharmacol. Sci., 9:227–229.

    Article  PubMed  CAS  Google Scholar 

  • Yamaoka, K., Tanigawara, Y., Nakagawa, T., and Uno, T., 1981, A pharmacokinetic analysis program (MULTI) for microcomputer, J. Pharm. Dyn., 4:879–885.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Nomura, Y., Kitamura, Y., Tohda, M., Imai, Si., Katada, T., Ui, M. (1991). Serotonin Receptor Subtypes in Brain: Ligand Binding Properties and Coupling with G Proteins. In: Kito, S., Segawa, T., Olsen, R.W. (eds) Neuroreceptor Mechanisms in Brain. Advances in Experimental Medicine and Biology, vol 287. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5907-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5907-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5909-8

  • Online ISBN: 978-1-4684-5907-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics