Regulation of Hepatic Lipase Expression by an Intermediate of the Cellular Cholesterol Biosynthetic Pathway

  • Steven J. Busch
  • Gary A. Martin
  • Roger L. Barnhart
  • Margaret A. Flanagan
  • Richard L. Jackson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 285)


Two lipolytic enzymes, hepatic triglyceride lipase (H-TGL) and lipoprotein lipase (LpL), are responsible for the catabolism of lipoproteins in the circulation (1). H-TGL is bound to endothelial cells lining the sinusoidal cavities of the liver and has been identified on the adrenals and ovaries as well. These steroidogenic tissues utilize cholesterol derived from receptor-mediated and receptor-independent pathways (2–7). Recent studies suggest that only the hepatocyte is capable of synthesizing H-TGL, and that extrahepatic H-TGL is derived directly from hepatic secretion (8). The level of hepatic secretion of H-TGL has been shown to be partially responsive to specific hormonal concentrations in the plasma and several factors in situ. However, no evidence has yet linked H-TGL expression to regulation of the cholesterol biosynthetic pathway. In this study we demonstrate that the expression of H-TGL in the transformed hepatic cell-line, HepG2, is induced under conditions in which the cholesterol biosynthetic pathway is inhibited. We demonstrate that by depriving the cell of a biosynthetic intermediate prior to cholesterol, H-TGL expression is substantially induced.


HepG2 Cell Hepatic Lipase Cellular Cholesterol Mevalonic Acid Hepatic Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. L. Jackson, Lipoprotein lipase and hepatic lipase, The Enzymes 16:141 (1983).CrossRefGoogle Scholar
  2. 2.
    H. Jansen and W. J. de Greef, L-type lipase activity in ovaries ofsuperovulated rats. Relationship to cholesterol homeostasis, Mol. Cell. Endocrinol. 57:7 (1988).PubMedCrossRefGoogle Scholar
  3. 3.
    M. S. Brown and J. L. Goldstein, A receptor-mediated pathway forcholesterol homeostasis, Science 232:34 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    E. Reaven, Y.-D. I. Chen, M. Spicher, S.-F. Hwang, C. E. Mondon and S. Azhar, Uptake of low density lipoproteins by rat tissues: Special emphasis on the luteinized ovary, J. Clin. Invest. 77:1971 (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    J. T. Gwynn and J. F. Strauss III, The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands, Endocr. Rev. 3:299 (1982).CrossRefGoogle Scholar
  6. 6.
    H. Jansen, Hepatic triglyceride lipase and high density lipoproteins, Arztl. Lab. 34:29 (1988).Google Scholar
  7. 7.
    H. Jansen and W. C. Hülsmann, Enzymology and physiological role of hepatic lipase, Biochem. Soc. Trans. 13:24 (1985).PubMedGoogle Scholar
  8. 8.
    M. H. Doolittle, H. Wong, R. C. Davis and M. C. Schotz, Synthesis of hepatic lipase in liver and extrahepatic tissues, J. Lipid Res. 28:1326 (1987).PubMedGoogle Scholar
  9. 9.
    0. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193:265 (1951).PubMedGoogle Scholar
  10. 10.
    G. A. Martin, S. J. Busch, G. D. Meredith, A. D. Cardin, D. T. Blanken-ship, S. J. T. Mao, A. E. Rechtin, C. W. Woods, M. M. Racke, M. P. Schafer, M. C. Fitzgerald, D. M. Burke, M. A. Flanagan and R. L. Jackson, Isolation and cDNA sequence of human postheparin plasma hepatic triglyceride lipase, J. Biol. Chem. 263:10907 (1988).PubMedGoogle Scholar
  11. 11.
    S. J. Busch, G. A. Martin, R. L. Barnhart and R. L. Jackson, Heparin induces the expression of hepatic triglyceride lipase in a human hepatoma (HepG2) cell-line, J. Biol. Chem. 264:9527 (1989).PubMedGoogle Scholar
  12. 12.
    J. J. Lee, F. J. Calzone, R. J. Britten, R. C. Angerer and E. H. Davidson, Activation of sea urchin actin genes during embryogenesis: Measurement of transcript accumulation from five different genes in Strongylocentrus purpuratus, J. Mol. Biol. 188:173 (1988).CrossRefGoogle Scholar
  13. 13.
    T. Maniatis, E. F. Fritsch and J. Sambrook, 1982, in: Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, New York.Google Scholar
  14. 14.
    C. Sadhu and L. Gedamu, Regulation of human metallothionein (MT) genes. Differential expression of MT1-F, MT1-G, and MT11-A genes in the hepatoblastoma cell line (HepG2), J. Biol. Chem. 263:2679 (1988).PubMedGoogle Scholar
  15. 15.
    K. L. Luskey and B. Stevens, Human 3-hydroxy-3-methylglutaryl coenzyme A reductase. Conserved domains responsible for catalytic activity and sterol-regulated degradation, J. Biol. Chem. 260:10271 (1985).PubMedGoogle Scholar
  16. 16.
    L. A. Beck, T. J. Hosick and M. Sinensky, Incorporation of a product of mevalonic acid metabolism into proteins of Chinese hamster ovary cell nuclei, J. Cell. Biol. 107:1307 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Steven J. Busch
    • 1
  • Gary A. Martin
    • 1
  • Roger L. Barnhart
    • 1
  • Margaret A. Flanagan
    • 1
  • Richard L. Jackson
    • 1
  1. 1.Merrell Dow Research InstituteCincinnatiUSA

Personalised recommendations