Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 285))

Abstract

Apolipoprotein B (ApoB) is obligatory for triglyceride transport. Why ApoB is singled out among all apolipoproteins is not well understood. ApoB is the most hydrophobic apolipoprotein among all known apolipoproteins. It has the highest tendency to undergo aggregation. If one examines the amino acid composition of ApoB it resembles any other common water-soluble protein. Why, then, is ApoB so hydrophobic? We believe that the thiolester 1 2 bound fatty acids recently found in ApoB1,2 may play an important role in contributing to the hydrophobic nature of ApoB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Huang, D. M. Lee and S. Singh, Identification of the thiol ester linked lipids in apolipoprotein B, Biochemistry 27:1395 (1988).

    Article  PubMed  CAS  Google Scholar 

  2. V. S. Kamanna and D. M. Lee, Presence of covalently attached fatty acids in rat apolipoprotein B via thiolester linkages, Biochem. Biophys. Res. Commun. 162:1508 (1989).

    Article  CAS  Google Scholar 

  3. J. Kyte and R. F. Doolittle, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157:105 (1982).

    Article  PubMed  CAS  Google Scholar 

  4. T. P. Hopp and K. R. Woods, Prediction of protein antigenic determinants from amino acid sequences, Proc. Natl. Acad. Sci. 78:3824 (1981).

    Article  CAS  Google Scholar 

  5. S.-H. Chen, C.-Y. Yang, P. F. Chen, D. Setzer, M. Tanimura, W.-H. Li, A. M. Gotto and L. Chan, The complete cDNA and amino acid sequence of human apolipoprotein B-100, J. Biol. Chem. 261:12918 (1986).

    CAS  Google Scholar 

  6. B. Meloun, L. Morávek and V. Kostka, Complete amino acid sequence of human serum albumin, FEBS Lett. 58:134 (1975).

    Article  PubMed  CAS  Google Scholar 

  7. S.-O. Olofsson, G. Bjursell, K. Boström, P. Carlsson, J. Elovson, A. A. Protter, M. A. Reuben and G. Bondjers, Apolipoprotein B: structure, biosynthesis and role in the lipoprotein assembly process, Athero sclerosis 68:1 (1987).

    CAS  Google Scholar 

  8. T. J. Knott, R. J. Pease, L. M. Powell, S. C. Wallis, S. C. Rall, Jr., T. L. Innerarity, B. Blackhart, W. H. Taylor, Y. Marcel, R. Milne, D. Johnson, M. Fuller, A. J. Lusis, B. J. McCarthy, R. W. Mahley, B. Levy-Wilson and J. Scott, Complete protein sequence and identification of structural domains of human apolipoprotein B, Nature 323:734 (1986).

    Article  PubMed  CAS  Google Scholar 

  9. C.-Y. Yang, S.-H. Chen, S. H. Gianturco, W. A. Bradley, W.A., J. T. Sparrow, M. Tanimura, W.-H. Li, D. W. Sparrow, H. DeLoof, M. Rosseneu, F.-S. Lee, Z.-W. Gu, A.M. Gotto, Jr. and L. Chan, Sequence, receptor-binding domains and internal repeats of human apolipoprotein B-100, Nature 323:738 (1986).

    Article  PubMed  CAS  Google Scholar 

  10. B.F. Tack, R.A. Harrison, J. Janatova, M.L. Thomas and J.W. Prahl, Evidence for presence of an internal thiolester bond in third component of human complement, Proc. Natl. Acad. Sci. USA 77:5764 (1980).

    Article  PubMed  CAS  Google Scholar 

  11. D.M. Lee and S. Singh, Presence and localization of two intramolecular thiolester linkages in apolipoprotein B, Circulation 76II:286 (1988).

    Google Scholar 

  12. W.R. Fisher, The structure of lipoproteins: Covalently bound fatty acids, Ph.D. Dissertation, University of Pennsylvania, University Microfilms, Inc., Ann Arbor, MI (1964).

    Google Scholar 

  13. W.R. Fisher and S. Gurin, Structure of lipoproteins. Covalently bound fatty acids. Science 143:362 (1964).

    Article  PubMed  CAS  Google Scholar 

  14. J.M. Hoeg, M.S. Meng, R. Ronan, S.J. Demosky, Jr., T. Fairwell and H.B. Brewer, Jr., Apolipoprotein B synthesized by Hep G2 cells undergoes fatty acid acylation, J. Lipid Res. 29:1215 (1988).

    PubMed  CAS  Google Scholar 

  15. J.M. Hoeg, M.S. Meng, R. Ronan, T. Fairwell and H.B. Brewer, Jr., Human apolipoprotein A-I. Post-translational modification by fatty acid acylation, J. Biol. Chem. 261:3911 (1986).

    PubMed  CAS  Google Scholar 

  16. D.M. Lee, A.J. Valente, W.H. Kuo and H. Maeda, Properties of apolipoprotein B in urea and in aqueous buffers. The use of glutathione and nitrogen in its solubilization, Biochim. Biophys. Acta 666:133 (1981).

    PubMed  CAS  Google Scholar 

  17. Y.M. Torchinsky, The chemical properties of SH groups. Sulfhydryl reagents, in: Sulfur in Proteins, Y.M. Torchinsky, ed., Pergamon Press, New York, NY (1981).

    Google Scholar 

  18. J.E. Buss and B.M. Sefton, Direct identification of palmitic acid as the lipid attached to p21raS, Mol. Cell. Biol. 6:116 (1986).

    CAS  Google Scholar 

  19. Z.-Q. Chen, L.S. Ulsh, G. DuBois and T.Y. Shih, Posttranslational processing of p21 ras proteins involves palmitylation of the C-terminal tetrapeptide containing Cysteine-186, J. Virology 56:607 (1985).

    PubMed  CAS  Google Scholar 

  20. B.M. Sefton, I.S. Trowbridge, J.A., Cooper and E.M. Scolnick, The transforming proteins of Rous sarcoma virus, Harvey sarcoma virus and Abelson virus contain tightly bound lipid, Cell 31:465 (1982).

    Article  PubMed  CAS  Google Scholar 

  21. B.M. Willumsen, K. Norris, A.G. Papageorge, N.L. Hubbert and D.R. Lowy, Harvey murine sarcoma virus p21 ras protein: Biological significance of the cysteine nearest the carboxy terminus, EMBO J. 3:2581 (1984).

    PubMed  CAS  Google Scholar 

  22. M.F.G. Schmidt and M.J. Schlesinger, Fatty acid binding to vesicular stomatitis virus glycoprotein: a new type of posttranslational mod ification of the viral glycoprotein, Cell 17:813 (1979).

    Article  PubMed  CAS  Google Scholar 

  23. M.F.G. Schmidt and M.J. Schlesinger, Relation of fatty acid attachment to the translation and maturation of vesicular stomatitis and Sindbis virus membrane glycoproteins, J. Biol. Chem. 255:3334 (1980).

    PubMed  CAS  Google Scholar 

  24. M.F.G. Schmidt, M. Bracha and M.J. Schlesinger, Evidence for covalent attachment of fatty acids to Sindbis virus glycoproteins, Proc. Natl. Acad. Sci. USA 76:1687 (1979).

    Article  PubMed  CAS  Google Scholar 

  25. J.K. Rose, G.A. Adams and C.J. Gallione, The presence of cysteine in the cytoplasmic domain of the vesicular stomatitis virus glycoprotein is required for palmitate addition, Proc. Natl. Acad. Sci. USA81:2050 (1984).

    Article  PubMed  CAS  Google Scholar 

  26. J.F. Kaufman, M.S. Krangel and J.L. Strominger, Cysteines in the transmembrane region of major histocompatibility complex antigens are fatty acylated via thioester bonds, J. Biol. Chem. 259:7230 (1984).

    PubMed  CAS  Google Scholar 

  27. M.B. Omary and I.S. Trowbridge, Covalent binding of fatty acid to thetransferrin receptor in cultured human cells, J. Biol. Chem. 256:4713 (1981).

    Google Scholar 

  28. M. Staufenbiel and E. Lazaride, Ankyrin is fatty acid acylated inerythrocytes, Proc. Natl. Acad. Sci. USA 83:318 (1986).

    Article  PubMed  CAS  Google Scholar 

  29. P.J. O’Brien and M. Zatz, Acylation of bovine rhodopsin by [3H]palmitic acid, J. Biol. Chem. 259:5054 (1984).

    PubMed  Google Scholar 

  30. J.H.P. Skene and I. Virág, Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43, J. Cell Biol. 108:613 (1989).

    Article  PubMed  CAS  Google Scholar 

  31. S. Jing and I.S. Trowbridge, Identification of the intermolecular disulfide bonds of the human transferrin receptor and its lipid-attachment site, EMBO J. 6:327 (1987).

    PubMed  CAS  Google Scholar 

  32. M.F.G. Schmidt, Acylation of viral spike glycoproteins: A feature of enveloped RNA viruses, Virology 116:327 (1982).

    Article  PubMed  CAS  Google Scholar 

  33. U. Klockmann and W. Deppert, Acylated simian virus 40 large T-antigen: a new subclass associated with a detergent-resistant lamina of the plasma membrane, EMBO J. 2:1151 (1983).

    PubMed  CAS  Google Scholar 

  34. B.M. Sefton and J.E. Buss, The covalent modification of eukaryoticproteins with lipid, J. Cell Biol. 104:1449 (1987).

    Article  PubMed  CAS  Google Scholar 

  35. J.E. Buss, P.A. Solski, J.P. Schaeffer, M.J. MacDonald, C.J. Der, Activation of the cellular proto-oncogene produce p21 ras by addition of a myristylation signal, Science 243:1600 (1989).

    Article  PubMed  CAS  Google Scholar 

  36. A.I. Magee, L. Gutierrez, I.A. McKay, C.J., Marshall and A. Hall, Dynamic fatty acylation of p21N-ras , EMBO J. 6:3353 (1987).

    PubMed  CAS  Google Scholar 

  37. W.G. Dunphy, E. Fries, L.J. Urbani and J.E. Rothman, Early and late functions associated with the Golgi apparatus reside in distinct compartments, Proc. Natl. Acad. Sci. USA 78:7453 (1981).

    Article  PubMed  CAS  Google Scholar 

  38. G. Ponsin, Relationship between structure and metabolism of HDL apo-lipoproteins: Study with synthetic peptides, Adv. Exp. Med. Biol. 243:139 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Lee, D.M. (1990). Implications of Thiolester Linked Fatty Acids in Apolipoprotein B. In: Malmendier, C.L., Alaupovic, P., Brewer, H.B. (eds) Hypercholesterolemia, Hypocholesterolemia, Hypertriglyceridemia, in Vivo Kinetics. Advances in Experimental Medicine and Biology, vol 285. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5904-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5904-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5906-7

  • Online ISBN: 978-1-4684-5904-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics