Probucol and its Mechanisms for Reducing Atherosclerosis

  • Richard L. Jackson
  • Roger L. Barnhart
  • Simon J. T. Mao
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 285)


Probucol (1) is a marketed lipid-lowering drug used in the treatment of hypercholesterolemia, including forms of familial hypercholesterole mia. In hyperlipidemic subjects, probucol reduces total plasma cholesterol and low density lipoprotein (LDL)-cholesterol by 10 to 20% and high density lipoprotein (HDL)-cholesterol by 20 to 30% (2). The drug has little or no effect on triglyceride concentrations in hypercholesterolemic subjects, although Hattori et al. (3) reported a significant reduction in serum triglycerides with probucol treatment in patients with noninsulin-dependent diabetes mellitus. The mechanism by which probucol reduces plasma cholesterol is not known with certainty. The most convincing evidence in man is that it increases the fractional catabolic rate of LDL clearance (4,5) and enhances bile acid excretion (5,6). The fall in HDL-cholesterol with probucol treatment results from a decrease in the rate of synthesis of apo A-I and apo A-II (5,7), the major protein constituents of HDL. In addition to its lipid-lowering activity probucol is a potent antioxidant, and it is this property which prevents cell and metal ion-mediated oxidative modification of LDL (8). Mao et al. (9) synthesized a number of analogs of probucol that retained the antioxidant property but had little or no lipid-lowering activity. Even though lipid levels were unchanged, these analogs were effective in reducing atherosclerosis in modified Watanabe heritable hyperlipedemic (WHHL) rabbits, suggesting that other mechanisms besides lipid-lowering account for this antiatherosclerotic property.


Smooth Muscle Cell Proliferation Foam Cell Formation Cholesteryl Ester Hydrolase Fractional Catabolic Rate Butyl Phenol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Barnhart, J. A. Sefranka and D. D. Mcintosh, Hypocholester-olemic effect of 4,4’-(isopropylidenedithio)-bis(2,6-di-t-butylphenol) (probucol), Am. J. Clin. Nutr. 23:1229 (1970).PubMedGoogle Scholar
  2. 2.
    M. T. Buckley, K. L. Goa, A. H. Price and R. N. Brogden, Probucol, a reappraisal of its pharmacological properties and therapeutic use in hypercholesterolemia, Drugs, 37:761 (1989).PubMedCrossRefGoogle Scholar
  3. 3.
    M. Hattori, K. Tsuda, T. Taminato, S. Nishi, J. Fujita, K. Tsuji, T. Kurose, G. Koh, Y. Seino and H. Imura, Effect of probucol on serum lipids and apoproteins in patients with noninsulindependent diabetes mellitus, Cur. Ther. Res., 42:967 (1987).Google Scholar
  4. 4.
    Y. A. Kesaniemi and S. M. Grundy, Influence of probucol on cholesterol and lipoprotein metabolism in man, J. Lipid Res. 25:780 (1984).PubMedGoogle Scholar
  5. 5.
    P. J. Nestel and T. Billington, Effects of probucol on low density lipoprotein removal and high density lipoprotein synthesis, Atherosclerosis 38:203 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    T. A. Miettinen, Mode of action of a new hypocholesteraemic drug (DH-581) in familial hypercholesterolemia, Atherosclerosis 15:163 (1972).PubMedCrossRefGoogle Scholar
  7. 7.
    R. F. Atmeh, J. M. Stewart, D. E. Boag, C. J. Packard, A. R. Lorimer and J. Shepherd, The hypolipidemic action of probucol: a study of its effects on high and low density lipoproteins, J. Lipid Res. 24:588 (1983).PubMedGoogle Scholar
  8. 8.
    S. Parthasarathy, S. G. Young, J. L. Witztum, R. C. Pittman and D. Steinberg, Probucol inhibits oxidative modification of low density lipoprotein, J. Clin. Invest. 77:641 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    S. J. T. Mao, M. T. Yates, A. E. Rechtin, R. L. Jackson and W. A. Van Sickle, Probucol and its derivatives prevent atherosclerosis in modified Watanabe rabbits, (submitted).Google Scholar
  10. 10.
    B. Halliwell, Free radicals, reactive oxygen species and human disease: a critical evaluation with special reference to atherosclerosis, Br. J. Exp. Path. 70:737 (1989).Google Scholar
  11. 11.
    D. Steinberg, S. Parthasarathy, T. E. Carew, J. C. Khoo and J. L. Witztum, Modifications of low-density lipoprotein that increase its atherogenicity, N. Eng. J. Med. 320:915 (1989).CrossRefGoogle Scholar
  12. 12.
    M. D. Stringer, P. G. Gorog, A. Freeman, V. V. Kakkar, Lipid peroxides and atherosclerosis, Br. Med. J. 298:281 (1989).CrossRefGoogle Scholar
  13. 13.
    S. J. T. Mao, A. E. Rechtin and R. L. Jackson, Immunochemical identification and determination of malondialdehyde in human plasma, Adv. Life Sci. (in press).Google Scholar
  14. 14.
    T. C. Simon, A. N. Makheja and J. M. Bailey, Formation of 15-hydroxyeicosatetraenoic acid (15-HETE) as the predominant eicosanoid in aortas from Watanabe heritable hyperlipidemic and cholesterol-fed rabbits, Atherosclerosis 75:31 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    J. W. Heinecke, Free radical modification of low-density lipoprotein: mechanisms and biological consequences, Free Rad. Biol. Med. 3:65 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    R. L. Barnhart, S. J. Busch and R. L. Jackson, Concentration-dependent antioxidant activity of probucol in low density lipoproteins in vitro: probucol degradation precedes lipoprotein oxidation, J. Lipid Res. 30:1703 (1989).PubMedGoogle Scholar
  17. 17.
    H. Esterbauer, G. Jurgens, O. Quechenberger and E. Roller, Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes, J. Lipid Res. 28:495 (1987).PubMedGoogle Scholar
  18. 18.
    L. R. McLean and K. A. Hagaman, Effect of probucol on the physical properties of low-density lipoproteins oxidized by copper, Biochemistry 28:321 (1989).PubMedCrossRefGoogle Scholar
  19. 19.
    W. Jessup, S. M. Rankin, C. V. De Whalley, J. R. S. Hoult, J. Scott D. S. Leake, a-Tocopherol consumption during low-densitylipoprotein oxidation, Biochem. J. 265:399 (1990).PubMedGoogle Scholar
  20. 20.
    D. W. Morel and G. M. Chisolm, Antioxidant treatment of diabetic rats inhibits lipoprotein oxidation and cytotoxicity, J. Lipid Res. 30:1827 (1989).PubMedGoogle Scholar
  21. 21.
    M. E. Haberland, A. M. Fogelman and P. A. Edwards, Specificity of receptor-mediated recognition of malondialdehyde-modified low density lipoproteins, Proc. Natl. Acad. Sci. USA 79:1712 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    J. Frostegard, J. Nilsson, A. Haegerstrand, A. Hamsten, H. Wigzell and M. Gidlund, Oxidized low density lipoprotein induces differentiation and adhesion of human monocytes and the monocytic cell line U937, Proc. Natl. Acad. Sci. USA 87:904 (1990).PubMedCrossRefGoogle Scholar
  23. 23.
    A. M. Wang, M. V. Doyle and D. F. Mark, Quantitation of mRNA by the polymerase chain reaction, Proc. Natl. Acad. Sci. USA 86:9717 (1989).PubMedCrossRefGoogle Scholar
  24. 24.
    G. Ku, N. S. Doherty, J. A. Wolos and R. L. Jackson, Inhibition by probucol of interleukin 1 secretion and its implication in atherosclerosis, Amer. J. Cardiol. 62:77B (1988).PubMedCrossRefGoogle Scholar
  25. 25.
    G. Ku, N. S. Doherty, L. F. Schmidt, R. L. Jackson and R. J. Dinerstein, Probucol, a hypocholesterolemic agent with antioxidant properties inhibits ex vivo lipopolysaccharideinduced interleukin 1 (IL-1) secretion from murine peritoneal macrophages FASEB J. 4:1645 (1990).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Richard L. Jackson
    • 1
  • Roger L. Barnhart
    • 1
  • Simon J. T. Mao
    • 1
  1. 1.Merrell Dow Research InstituteCincinnatiUSA

Personalised recommendations