The Role of Oxidized LDL in Atherosclerosis

  • Joseph L. Witztum
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 285)


Atherosclerosis is a complex disease involving a variety of circulating blood components, lipoproteins, and their interactions with the cells and proteins of the extracellular matrix of the artery wall. The end stage lesion, which results in the occlusion of a vessel and/or provides a thrombogenic surface which leads to intravas cular thrombosis is frequently an acellular, fibrotic section of tissue reflecting the end stage of a complicated inflammatory process. The atherosclerotic plaque contains the cellular debris of dead and decaying cells and a variety of substances trapped amidst this debris, including cholesterol, chiefly in the form of precipitated crystals1. While many pathogenic mechanisms must be involved in transforming normal arterial tissue, which contains only a one-or two-layer thick intimal layer, into this highly thickened intima, it is nevertheless clear that deposition of cholesterol within the intima plays a central role in the pathogenesis of the atherosclerotic plaque. Because arterial wall cholesterol is derived almost exclusively from circulating lipoproteins, chiefly in the form of low density lipoproteins (LDL), research must focus on trying to understand the sequence of events by which the plaque develops and by which LDL accumulates2–5. There are many lines of evidence that support the hypothesis that circulating cholesterol, principally in the form of LDL, is central to the atherogenic process and that without “sufficient” plasma LDL levels, the atherogenic process cannot proceed4,6.


Atherosclerotic Lesion Oxidative Modification Foam Cell Formation Fatty Streak Atherogenic Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.M. Small, Progression and regression of atherosclerotic lesions. Insights from lipid physical biochemistry, Arteriosclerosis 8:103 (1988).PubMedCrossRefGoogle Scholar
  2. 2.
    D.C. Schwenke DC, and T.E. Carew, Initiation of atherosclerotic lesiona in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions, Arteriosclerosis 9:895 (1989).PubMedCrossRefGoogle Scholar
  3. 3.
    D.C. Schwenke, and T.E. Carew, Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries, Arteriosclerosis 9:908 (1989).PubMedCrossRefGoogle Scholar
  4. 4.
    D. Steinberg, S. Parthasarathy, T.E. Carew et al. ,Beyond cholesterol: Modifications of low density lipoprotein that increase its atherogenicity, New Engl. J. Med. 320:915 (1989).PubMedCrossRefGoogle Scholar
  5. 5.
    R. Ross, The pathogenesis of atherosclerosis -an update, New Engl. J. Med. 314:418 (1986).CrossRefGoogle Scholar
  6. 6.
    J.L. Witztum, Current approaches to drug therapy for the hypercholesterolemic patient, Circulation 80:1101 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    A.M. Gown, T. Tsukada, and R. Ross, Human atherosclerosis: Immunocyto chemical analysis of the cellular composition of human atherosclerotic lesions, Am. J. Pathol. 125:191 (1986).PubMedGoogle Scholar
  8. 8.
    R.G. Gerrity, H.K. Naito, M. Richardson et al. ,Dietary induced atherogenesis in swine, Am J. Pathol. 95:775 (1979).PubMedGoogle Scholar
  9. 9.
    A. Faggiotto, R. Ross, and L. Harker, Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation, Arterio sclerosis 4:323 (1984).CrossRefGoogle Scholar
  10. 10.
    N.M. Aqel, R.Y. Ball, H. Waldman et al. ,Monocytic origin of foam cells in human atherosclerotic plaques, Atherosclerosis 53:265 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    M.E. Rosenfeld, T. Tsukada, A.M. Gown et al ,Fatty streak initiation in the WHHL and comparably hypercholesterolemic fat-fed rabbits, Arteriosclerosis1:9 (1987)Google Scholar
  12. 12.
    M.P. Bevilacqua, J.S. Pober, M.E. Wheeler et al. ,Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines, L Clin. Invest. 76:2003 (1985).CrossRefGoogle Scholar
  13. 13.
    J. A. Berliner, M.C. Territo, A. Sevanian et al. ,Minimally modified low density lipoprotein stimulates monocyte endothelial interactions, J. Clin. Invest. 85:1260 (1990).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Ross, J. Masuda, E.W. Raines et al. ,Localization of PDGF-B protein in macrophages in all phases of atherogenesis, Science 248:1009 (1990).PubMedCrossRefGoogle Scholar
  15. 15.
    M.S. Brown, J.L. Goldstein, Lipoprotein metabolism in the macrophage: Implications for cholesterol deposition in atherosclerosis, Ann. Rev. Biochem.52:223 (1983).PubMedCrossRefGoogle Scholar
  16. 16.
    J.L. Goldstein, Y.K. Ho, S.K. Basu et al. ,Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition, Proc. Natl. Acad. Sci. USA 76:333 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    A.M. Fogelman, I. Schechter, J. Seager et al. ,Malondialdehyde alteration of low density lipoprotein leads to cholesterol accumulation in human monocytemacrophages, Proc. Natl. Acad. Sci. USA 74:2214 (1980).CrossRefGoogle Scholar
  18. 18.
    M.E. Haberland, A.M. Fogelman, and P.A. Edwards, Specificity of receptor mediated recognition of malondialdehyde-modified low density lipoproteins, Proc. Natl. Acad. Sci. USA 79:1712 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    T. Henriksen, E.M. Mahoney, and D. Steinberg, Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: Recognition by the receptor for acetylated low density lipoproteins, Proc. Natl. Acad. Sci. USA 78:6499 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    C.P. Sparrow, S. Parthasarathy, and D. Steinberg, A macrophage receptor that recognizes oxidized LDL but not acetylated LDL, J. Biol. Chem. 264:2599 (1989).PubMedGoogle Scholar
  21. 21.
    T. Kodama, M. Freeman, L. Rohrer et al. ,Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 343:531 (1990).PubMedCrossRefGoogle Scholar
  22. 22.
    U.P. Steinbrecher, S. Parthasarathy, D.S. Leake et al. ,Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids, Proc. Natl. Acad. Sci.USA 83:3883 (1984).CrossRefGoogle Scholar
  23. 23.
    D.W. Morel, P.E. DiCorleto, and G.M. Chisolm, Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation, Arteriosclerosis 4:357 (1984).PubMedCrossRefGoogle Scholar
  24. 24.
    J.W. Heinecke, H. Rosen, and A. Chait, Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture, L Clin. Invest. 74:1890 (1984).CrossRefGoogle Scholar
  25. 25.
    S. Parthasarathy, U.P. Steinbrecher, J. Barnett et al ,Essential role of phospholipase A2 activity in endothelial cell-induced modification of low density lipoprotein, Proc. Natl. Acad. Sci. USA 82:3000 (1985).PubMedCrossRefGoogle Scholar
  26. 26.
    H.F. Hoff, J. O’Neil, G.M. Chisolm 3d et aL ,Modification of low density lipoprotein with 4-hydroxynonenal induces uptake by macrophages, Arterio sclerosis 9:538 (1989).CrossRefGoogle Scholar
  27. 27.
    M.T. Quinn, S. Parthasarathy, L.G. Fong et al ,Oxidatively modified low density lipoproteins: A potential role in recruitment and retention of monocyte/macrophages during atherogenesis, Proc. Natl. Acad. Sci. USA84:2995 (1987).PubMedCrossRefGoogle Scholar
  28. 28.
    J.R. Hessler, A.L. Robertson, Jr, and G.M. Chisolm, LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture, Atherosclerosis 32:213 (1979).PubMedCrossRefGoogle Scholar
  29. 29.
    K. Kugiyama, S.A. Kerns, J.D. Morrisett et al ,Impairment of endothelium dependent arterial relaxation by lysolecithin in modified low-density lipoproteins, Nature 344:160 (1990).PubMedCrossRefGoogle Scholar
  30. 30.
    W. Palinski, M.E. Rosenfeld, S. Yla-Herttuala et al ,Low density lipoprotein undergoes oxidative modification in vivo, Proc. Natl. Acad. Sci. USA 86:1372 (1989).PubMedCrossRefGoogle Scholar
  31. 31.
    S. Yla-Herttuala, W. Palinski, M.E. Rosenfeld et al ,Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 84:1086 (1989).PubMedCrossRefGoogle Scholar
  32. 32.
    W. Palinski, S. Yla-Herttuala, M.E. Rosenfeld, Antisera and monoclonal antibodies specific for epitopes generated during the oxidative modification of low density lipoproteins, Arteriosclerosis 10:325 (1990).PubMedCrossRefGoogle Scholar
  33. 33.
    M.E. Rosenfeld, W. Palinski, S. Yla-Herttuala et al ,Distribution of oxidized proteins and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits: Immunocytochemical analysis using antibodies generated against modified and native LDL, Arteriosclerosis 10:336 (1990).PubMedCrossRefGoogle Scholar
  34. 34.
    M.E.Haberland, D. Fong, and L. Cheng, Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits, Science241:215 (1988).PubMedCrossRefGoogle Scholar
  35. 35.
    H.C. Boyd, A.M. Gown, G. Wolfbayer et al. ,Direct evidence for a protein recognized by a monoclonal antibody against oxidatively modified LDL in atherosclerotic lesions from Watanabe Heritable Hyperlipemic rabbit, Am. J.PathQL 135:1372 (1989).Google Scholar
  36. 36.
    S. Parthasarathy, S.G. Young, J.L. Witztum et al ,Probucol inhibits oxidative modification of low density lipoprotein, J. Clin. Invest. 77:641 (1986).PubMedCrossRefGoogle Scholar
  37. 37.
    T.E. Carew, D.C. Schwenke, and D. Steinberg, Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: Evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks slowing the progression of atherosclerosis in the WHHL rabbit, Proc. Natl. Acad. Sci. USA 84:7725 (1987).PubMedCrossRefGoogle Scholar
  38. 38.
    T. Kita, Y. Nagano, M. Yokode, Probucol prevents the progression of athero sclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia, Proc. Natl. Acad. Sci. USA 84:5928 (1987).PubMedCrossRefGoogle Scholar
  39. 39.
    G. Franceschini, M. Sirtori, V. Vaccarino et al., Mechanisms of HDL reduction after probucol. Changes in HDL subfractions and increased reverse cholesteryl ester transfer. Arteriosclerosis 9:462 (1989).PubMedCrossRefGoogle Scholar
  40. 40.
    G. Ku, N.S. Doherty, L.F. Schmidt et al. ,Ex vivo lipopolysaccharide-induced interleukin-1 secretion from murine peritoneal macrophages inhibited by probucol, a hypocholesterolemic agent with antioxidant properties. FASEB J4:1645(1990).PubMedGoogle Scholar
  41. 41.
    G.K. Hansson, L. Jonasson, P.S. Seifert et al. ,Immune mechanisms in atherosclerosis, Arteriosclerosis 9:567 (1989).PubMedCrossRefGoogle Scholar
  42. 42.
    S.M. Rankin, S. Parthasarathy, and D. Steinberg, Evidence for a dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages. Submitted for publication (1990).Google Scholar
  43. 43.
    S. Yla-Herttuala, M.E. Rosenfeld, S. Parthasarathy et al. ,Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions, Proc. Natl. Acad. Sci. USA, in press (1990).Google Scholar
  44. 44.
    S. Parthasarathy, J.C. Khoo, E. Miller et al. ,Low density lipoprotein rich in oleci acid is protected against oxidative modification: Implications for dietary prevention of atherosclerosis, Proc. Natl. Acad. Sci. USA 87:3894, 1990.PubMedCrossRefGoogle Scholar
  45. 45.
    S. Yla-Herttuala, W. Palinski, M.E. Rosenfeld et al. ,Lipoproteins in normal and atherosclerotic aorta, Eur. Heart J. II, Suppl. E, in press (1990).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Joseph L. Witztum
    • 1
  1. 1.Department of MedicineUniversity of California, San DiegoLa JollaUSA

Personalised recommendations