ApoB-Containing Lipoprotein Particles as Risk Factors for Coronary Artery Disease

  • P. Alaupovic
  • D. H. Blackenhorn
  • C. Knight-Gibson
  • M. Tavella
  • J.-M. Bard
  • D. Shafer
  • E. T. Lee
  • J. Brasuell
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 285)


The function of lipid transport is to facilitate the transfer of ex ogenous and endogenous triglycerides and cholesterol from their sites of absorption or formation to their sites of storage and utilization. This function is carried out by triglyceride-rich lipoproteins of intestinal and hepatic origin through a series of enzymic conversion reactions resulting in release of triglyceride fatty acids and generation of cholesterol-rich remnant lipoproteins. Under normal, steady-state conditions, the input and output of triglyceride-rich lipoproteins are balanced with little or no change in their plasma levels. However, an increased influx and/or a decreased efflux of triglyceride-rich lipoproteins from the plasma compartment have been identified as main pathophysiologic mechanisms leading to hypertriglyceridemia1. The increased formation and/or decreased removal of cholesterol-rich lipoproteins results in hypercholesterolemia which may or may not accompany typically hypertriglyceridemic states. Deranged lipid transport processes are of great clinical significance, because they are identified as one of the main factors responsible for the genesis and development of atherosclerosis2–4.


Lipoprotein Particle Plasma Triglyceride Level Atherogenic Potential Niacin Therapy Oklahoma Medical Research Foundation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.M. Grundy, Pathogenesis of hyperlipoproteinemia, J. Lipid Res. 25:1611 (1984).PubMedGoogle Scholar
  2. 2.
    R.B. Wallace, and R.A. Anderson, Blood lipids, lipid-related measures, and the risk of atherosclerotic cardiovascular disease, Epidemiol. Rev. 9:95 (1987).PubMedGoogle Scholar
  3. 3.
    K.M. Anderson, W.P. Castelli, and D. Levy, Cholesterol and mortality: 30 years of follow-up from the Framingham study, JAMA 257:2176 (1987).PubMedCrossRefGoogle Scholar
  4. 4.
    M.A. Austin, Plasma triglyceride as a risk factor for coronary heart disease: the epidemiologic evidence and beyond, Am. J. Epidemiol. 129:249 (1989).PubMedGoogle Scholar
  5. 5.
    L.A. Carlson, and L.E. Bottiger, Serum triglycerides, to be or not to be a risk factor for ischaemic heart disease? Atherosclerosis 39:287 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    S.B. Hulley, R.H. Rosenman, R.D. Bawol, and R.J. Brand, Epidemiology as a guide to clinical disorders. The association between triglyc eride and coronary heart disease, N. Engl. J. Med. 302:1383 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    L. Lapidus, C. Bengtsson, O. Lindquist, J.A. Sigurdsson, and E. Ryleo, Triglycerides -main lipid risk factor for cardiovascular disease in women? Acta Med. Scand. 217:481 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    W.B. Kannel, W.P. Castelli, T. Gordon, and P.M. McNamara, Serum cho lesterol, lipoproteins and the risk of coronary heart disease. The Framingham study, Ann. Intern. Med. 74:1 (1971).PubMedGoogle Scholar
  9. 9.
    S. Heyden, G. Heiss, C.G. Hames, and A.G. Bartel, Fasting triglycerides as predictors of total and CHD mortality in Evans County, Georgia, J. Chrpn. Dis. 33:275 (1980).CrossRefGoogle Scholar
  10. 10.
    F. Cambien, A. Jacqueson, J.L. Richard, J.M. Warnet, P. Ducimetiere, and J.R. Claude, Is the level of serum triglyceride a significant predictor of coronary death in “normocholesterolemic” subjects? Am. J. Epidemiol. 124:624 (1986).PubMedGoogle Scholar
  11. 11.
    R. Tatami, H. Mabuchi, K. Ueda, R. Ueda, T. Haba, T. Kametani, S. Ito, J. Koizumi, M. Ohta, S. Miyamoto, A. Nakayama, H. Kanoya, H. Oiwake, A. Genda, and R. Takeda, Intermediate-density lipoprotein and cholesterol-rich very low density lipoprotein in angiographically determined coronary artery disease, Circulation 64:1174 (1981).PubMedCrossRefGoogle Scholar
  12. 12.
    M.F. Reardon, P.J. Nestel, I.H. Craig, and R.W. Harper, Lipoprotein predictors of the severity of coronary artery disease in men and women, Circulation 71:881 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    C.H. Breier, J.R. Patsch, V. Muhlberger, H. Drexel, E. Knapp, and H. Braunsteiner, Risk factors for coronary artery disease: a study comparing hypercholesterolemia and hypertriglyceridaemia in angiographically characterized patients, Eur. J. Clin. Invest. 19:419 (1989).PubMedCrossRefGoogle Scholar
  14. 14.
    J.L. Goldstein, W.R. Hazzard, H.G. Schrott, E.L. Bierman, and A.G. Motulsky, I. Lipid levels in 500 survivors of myocardial infarction, J. Clin. Invest. 52:1533 (1973).PubMedCrossRefGoogle Scholar
  15. 15.
    E.J. Schaefer, J.R. McNamara, J. Genest, and J.M. Ordovas, Clinical significance of hypertriglyceridemia, Semin. Thromb. Hemost. 14:143 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    J.P. Kane, G.C. Chen, R.L. Hamilton, D.A. Hardman, M.J. Malloy, and R.J. Havel, Remnants of lipoproteins of intestinal and hepatic origin in familial dysbetalipoproteinemia, Arteriosclerosis 3:47 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    L.A. Simons, T. Dwyer, J. Simons, L. Bernstein, P. Mack, N.S. Poon, S. Balasubramaniam, D. Baron, J. Branson, J. Morgan, and P. Roy, Chylomicrons and chylomicron remnants in coronary artery disease: a casecontrol study, Atherosclerosis 65:181 (1987).PubMedCrossRefGoogle Scholar
  18. 18.
    D.B. Zilversmit, Atherogenesis: a postprandial phenomenon, Circulation 60:473 (1979).PubMedGoogle Scholar
  19. 19.
    C.H. Floren, J.J. Albers, and E.L. Bierman, Uptake of chylomicronremnants causes cholesterol accumulation in cultured human arterial smooth muscle cells, Biochim. Biophys. Acta 663:336 (1981).PubMedGoogle Scholar
  20. 20.
    S. Eisenberg, Lipoprotein abnormalities in hypertriglyceridemia: significance in atherosclerosis, Am. Heart. J. 113:555 (1987).PubMedCrossRefGoogle Scholar
  21. 21.
    S.H. Gianturco, and W.A. Bradley, Lipoprotein-mediated cellular mechanisms for atherogenesis in hypertriglyceridemia, Semin.. Thromb. Hemost. 14:165 (1988).PubMedCrossRefGoogle Scholar
  22. 22.
    P. Alaupovic, Conceptual development of the classification systems of plasma lipoproteins, Protides Biol. Fluids Proc. Colloq. 19:9(1972).Google Scholar
  23. 23.
    B.J. Dolphin, Lipoprotein metabolism and the role of apolipoproteins as metabolic programmers, Can. J. Biochem. Cell Biol. 63:850 (1985).PubMedCrossRefGoogle Scholar
  24. 24.
    J.D. Brunzell, A.D. Sniderman, J.J. Albers, and P. Kwiterovich, Jr., Apolipoproteins B and A-I and coronary artery disease in humans, Arteriosclerosis 4:79 (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    D. Steinberg, Lipoproteins and atherosclerosis: some unanswered questions, Am. Heart J. 113:626 (1987).PubMedCrossRefGoogle Scholar
  26. 26.
    R. Krauss, Relationship of intermediate and low-density lipoproteins subspecies to risk of coronary artery disease, Am. Heart J. 113:578 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    D.H. Blankenhorn, S.A. Nessim, R.L. Johnson, M.E. Sanmarco, S.P. Azen, and L. Cashin-Hemphill, Beneficial effect of combined colestipolniacin therapy on coronary atherosclerosis and coronary venous bypass grafts, JAMA 257:3233 (1987).PubMedCrossRefGoogle Scholar
  28. 28.
    D.H. Blankenhorn, P. Alaupovic, E. Wickham, H.P. Chin, and S.P. Azen, rediction of angiographic change in native human coronary arteries and aortocoronary bypass grafts. Lipid and nonlipid factors, Circulation 81:470 (1990).PubMedCrossRefGoogle Scholar
  29. 29.
    P. Alaupovic, W.J. McConathy, J. Fesmire, M. Tavella, and J.M. Bard, rofiles of apolipoproteins and apolipoprotein B-containing lipoprotein particles in dyslipoproteinemias, Clin. Chem. 34:B13 (1988).PubMedGoogle Scholar
  30. 30.
    P. Alaupovic, C.S. Wang, W.J. McConathy, D. Weiser, and D. Downs, ipolytic degradation of human very low density lipoproteins by human milk lipoprotein lipase: the identification of lipoprotein B as the main lipoprotein degradation product, Arch. Biochem. Biophys. 224:226 (1986).CrossRefGoogle Scholar
  31. 31.
    P. Alaupovic, M. Tavella, and J. Fesmire, Separation and identifica ion of ApoB-containing lipoprotein particles in normolipidemic subjects and patients with hyperlipoproteinemias, Adv. Exp. Med. Biol. 210:7 (1987).PubMedGoogle Scholar
  32. 32.
    P. Alaupovic, M. Tavella, J.M. Bard, C.S. Wang, P.O. Attman, E. Koren, . Corder, C. Knight-Gibson, and D. Downs, Lipoprotein particles in hypertriglyceridemic states, Adv. Exp.. Med. Biol. 243:289 (1988).PubMedCrossRefGoogle Scholar
  33. 33.
    N. Dashti, P. Alaupovic, C. Knight-Gibson, and E. Koren, Identification and partial characterization of discrete apolipoprotein Bcontaining lipoprotein particles produced by human hepatoma cell line HepG2, Biochemistry 26:4837 (1987)PubMedCrossRefGoogle Scholar
  34. 34.
    P. Alaupovic, David Rubinstein Memorial Lecture: the biochemical and linical significance of the interrelationship between very low density and high density lipoproteins, Can. J. Biochem. 59:565 (1981).PubMedCrossRefGoogle Scholar
  35. 35.
    M. Tavella, P. Alaupovic, D. Blankenhorn, and H.P. Chin, Specific ffect of combined colestipol and niacin therapy on apolipoprotein B-containing particles, Arteriosclerosis 7:515a (1987).Google Scholar
  36. 36.
    V. Manninen, O. Elo, H. Frick, K. Haapa, O.P. Heinonen, P. Heinsalmi, . Helo, J.K. Huttunen, P. Kaitaniemi, P. Koskinen, H. Maenpaa, M. Mälkönen, M. Mänttäri, S. Norola, A. Pasternack, J. Pikkarainen, M. Romo, T. Sjöblom, and E. A. Nikkilä, Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study, JAMA 260:641 (1988).PubMedCrossRefGoogle Scholar
  37. 37.
    C. Corder, M. Tavella, and P. Alaupovic, Effect of gemfibrozil on iscrete ApoB-containing lipoproteins in patients with type V hyperlipoproteinemia, Arteriosclerosis 7:515a (1987).Google Scholar
  38. 38.
    P. Alaupovic, and P.R. Blackett, The dyslipoproteinemias of diabetes ellitus, in Human Plasma Lipoproteins, J.C. Fruchart and J. Shepherd, eds., Walter de Gruyter Press, Berlin-New York, pp. 173–206 (1989).Google Scholar
  39. 39.
    A. Fontbonne, E. Eschwège, F. Cambien, J.-L. Richard, P. Ducimetière, . Thibult, J.-M. Warnet, J.-R. Claude, andG.-E. Rosselin, Hypertriglyceridiamia as a risk factor of coronary heart disease mortality in subjects with impaired glucose tolerance or diabetes. Results from the 11-year follow-up of the Paris prospective study, Diabetologia 32:300 (1989).PubMedCrossRefGoogle Scholar
  40. 40.
    R.J. Havel, Role of triglyceride-rich lipoproteins in progression of therosclerosis, Circulation 81:694 (1990).PubMedCrossRefGoogle Scholar
  41. 41.
    E. Koren, C. Corder, G. Mueller, J. Centurion, J. Fesmire, L. Hunt, nd P. Alaupovic, Coronary artery disease and triglyceride enriched lipoproteins, FASEB J. 2:A1596 (1988).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • P. Alaupovic
    • 1
    • 2
    • 3
  • D. H. Blackenhorn
    • 1
    • 2
    • 3
  • C. Knight-Gibson
    • 1
    • 2
    • 3
  • M. Tavella
    • 1
    • 2
    • 3
  • J.-M. Bard
    • 1
    • 2
    • 3
  • D. Shafer
    • 1
    • 2
    • 3
  • E. T. Lee
    • 1
    • 2
    • 3
  • J. Brasuell
    • 1
    • 2
    • 3
  1. 1.Lipoprotein and Atherosclerosis Research ProgramOklahoma Medical Research FoundationOklahoma CityUSA
  2. 2.Department of MedicineUniversity of Southern California School of MedicineLos AngelesUSA
  3. 3.USPHS Indian HospitalClaremoreUSA

Personalised recommendations