Skip to main content

A Paradigm for Aldehyde Oxidation: Histidinol Dehydrogenase

  • Chapter
Book cover Enzymology and Molecular Biology of Carbonyl Metabolism 3

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 284))

Abstract

Histidinol dehydrogenase (HDH, EC 1.1.1.23) catalyzes the oxidation of histidinol to histidine, using two moles of NAD. The reaction is the final step in the biosynthesis of histidine in bacteria, plants, and fungi. The enzyme is of particular interest in what it can tell us about dehydrogenase action: the reaction contains both alcohol and aldehyde dehydrogenase steps, apparently occurring at a single active site. Two other enzymes, UDP-glucose dehydrogenase (UDPGDH, EC 1.1.1.22) and hydroxymethyl glutaryl CoA reductase (HMGR, EC 1.1.1.34) catalyze conceptually similar 4-electron oxidations. Although the latter two have important roles in health and disease, for the enzymologist HDH offers the advantage of a long and interesting genetic history, and is particularly well suited to molecular approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, E. (1955) L-Histidinal, a biosynthetic precursor of histidine. J. Biol. Chem. 217, 325–344.

    PubMed  CAS  Google Scholar 

  • Bitar, K. G., Firca, J. R., and Loper, J. C. (1977) Histidinol dehydrogenase from Salmonella typhimuriumand Escherichia coli. Purification, some characteristics and the amino acid sequence around a reactive thiol group. Biochim. Biophys. Acta 493, 429–440.

    PubMed  CAS  Google Scholar 

  • Burger, E., and Gorisch, H. (1981a) Patterns of product inhibition of a bifunctional dehydrogenase; L-histidinol:NAD+ oxidoreductase. Eur. J. Biochem. 116, 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Burger, E., and Gorisch, H. (1981b) Evidence for an essential lysine at the active site of L-histidinol:NAD+ oxidoreductase; a bifunctional dehydrogenase. Eur. J. Biochem. 118, 125–130.

    Article  PubMed  CAS  Google Scholar 

  • Burger, E., Gorisch, H., and Lingens, F. (1979) The catalytically active form of histidinol dehydrogenase from Salmonella typhimurium. Biochem. J. 181, 771–774.

    PubMed  CAS  Google Scholar 

  • Carlomagno, M. S., Chiariotti, L., Alifano, P., Nappo, A. G.,&Bruni, C. (1988) Structure and function of the Salmonella typhimuriumand Escherichia coliK-12 histidine Operons. J. Mol. Biol. 203, 585–606.

    Article  PubMed  CAS  Google Scholar 

  • Cook, P. F.,&Bertagnolli, B. L. (1986) Kinetics of pyridine nucleotide-utilizing enzymes, in: Pyridine Nucleotide Coenzymes (Dolphin, D., Avramovic, O,&Poulsen, R., eds.) Part A, pp 405–447. Wiley, New York.

    Google Scholar 

  • Donahue, T. F., Farabaugh, P. J.,&Fink, G. R. (1982) The nucleotide sequence of the HIS4region of yeast. Gene 18, 47–59.

    Article  PubMed  CAS  Google Scholar 

  • Dutler, H., Ambar, A.,&Donatsch, J. (1986) Function of zinc in liver alcohol dehydrogenase, in: Zinc Enzymes (Bertini, I., Luchinat, C., Maret, W.,&Zeppezauer, M., eds.) Birkhauser, Boston, pp 471–483

    Google Scholar 

  • Eccleston, E. D., Thayer, M. L.,&Kirkwood, S. (1979) Mechanisms of action of histidinol dehydrogenase and UDP-Glc dehydrogenase: evidence that the half-reactions proceed on separate subunits. J. Biol. Chem. 254, 11399–11404.

    PubMed  CAS  Google Scholar 

  • Franzen, B., Carrubba, C., Feingold, D. S., Ashcom, J.,&Franzen, J. S. (1981) Amino acid sequence of the tryptic peptide containing the catalytic-site thiol group of bovine liver uridine diphosphate glucose dehydrogenase. Biochem. J. 199, 599–602.

    PubMed  CAS  Google Scholar 

  • Gorisch, H.,&Holke, W. (1985) Binding of histidinal to histidinol dehydrogenase. Eur. J. Biochem. 150, 305–308.

    Article  PubMed  CAS  Google Scholar 

  • Greeb, J., Atkins, J. F.,&Loper, J. C. (1971) Histidinol dehydrogenase (hisD)mutants of Salmonella typhimurium. J. Bacteriol. 106, 421–431.

    PubMed  CAS  Google Scholar 

  • Grubmeyer, C., Chu, K W.,&Insinga, S. (1987) Kinetic mechanism of histidinol dehydrogenase: histidinol binding and exchange reactions. Biochemistry, 26, 3369–3373.

    Article  PubMed  CAS  Google Scholar 

  • Grubmeyer, C. T., and Gray, W. R. (1986) A cysteine residue (cysteine-116) in the histidinol binding site of histidinol dehydrogenase. Biochemistry 25, 4778–4784.

    Article  PubMed  CAS  Google Scholar 

  • Grubmeyer, C. T., and Insinga, S. (1990) Histidinol dehydrogenase: 18O isotope shift in 13C NMR reveals origin of histidine oxygens. J. Am. Chem. Soc. (in press).

    Google Scholar 

  • Grubmeyer, C., Insinga, S., Bhatia, M.,&Moazami, N. (1989a) Salmonella typhimuriumhistidinol dehydrogenase: complete reaction stereochemistry and active site mapping. Biochemistry 28, 8174–8180.

    Article  PubMed  CAS  Google Scholar 

  • Grubmeyer, C., Skiadopoulos, M., and Senior, A. E. (1989b) L-Histidinol dehydrogenase, a Zn2+-metalloenzyme. Arch. Biochem. Biophys. 272, 311–317.

    Article  PubMed  CAS  Google Scholar 

  • Hermes, J. D., Morrical, S. W., O’Leary, M. H., and Cleland, W. W. (1984) Variation of transition-state structure as a function of the nucleotide in reactions catalyzed by dehydrogenases. 2. Formate dehydrogenase. Biochemistry 23, 5479–5488.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. B., and Taylor, K. E. (1976) Nicotinamide coenzyme regeneration. Flavin mononucleotide (riboflavin phosphate) as an efficient, economical, and enzyme compatible recycling agent. Can J. Chem. 54, 2969–2973.

    Article  CAS  Google Scholar 

  • Kohno, T.,&Gray, W. R. (1981) Chemical and genetic studies on L-histidinol dehydrogenase of Salmonella typhimurium:isolation and structure of the tryptic peptides. J. Mol. Biol. 147, 451–464.

    Article  PubMed  CAS  Google Scholar 

  • Lai, C. Y., Tchola, O., Cheng, T., and Horecker, B. L. (1965) The mechanism of action of aldolases. VIII. The number of combining sites in fructose diphosphate aldolase. J. Biol. Chem. 240, 1347–1355.

    PubMed  CAS  Google Scholar 

  • Lee, S.-Y, and Grubmeyer, C. T. (1987) Purification and in vitro complementation of mutant histidinol dehydrogenases. J. Bacteriol. 169, 3938–3944.

    PubMed  CAS  Google Scholar 

  • Loper, J. C.,&Adams, E. (1965) Purification and properties of histidinol dehydrogenase from Salmonella typhimurium. J. Biol. Chem. 240, 788–795.

    PubMed  CAS  Google Scholar 

  • Luskey, K. L.&Stevens, B. (1985) Human 3-hydroxy-3-methylglutaryl coenzyme A reductase: conserved domains responsible for catalytic activity and sterol regulated degradation. J. Biol. Chem. 260, 10271–10277.

    PubMed  CAS  Google Scholar 

  • Model, P., Ponticorvo, L., and Rittenberg, D. (1968) Catalysis of an oxygen-exchange reaction of fructose 1,6-diphosphate and fructose 1-phosphate with water by rabbit muscle aldolase. Biochemistry 7, 1339–1347.

    Article  PubMed  CAS  Google Scholar 

  • Ordman, A. B., and Kirkwood, S. (1977) Mechanism of action of uridine diphosphoglucose dehydrogenase: evidence for an essential lysine residue at the active site. J. Biol. Chem. 252, 1320–1326.

    PubMed  CAS  Google Scholar 

  • Ridley, W. P., and Kirkwood, S. (1975) The stereospecificity of hydrogen abstraction by uridine diphosphoglucose dehydrogenase. Biochem. Biophys. Res. Commun. 54, 955–960.

    Article  Google Scholar 

  • Ridley, W. P., Houchins, J. P., and Kirkwood, S. (1975) Mechanism of action of uridine diphosphoglucose dehydrogenase: evidence for a second reversible dehydrogenation step involving an essential thiol group. J. Biol. Chem. 250, 8761–8767.

    PubMed  CAS  Google Scholar 

  • Rogers, D. H., Panini, S. R., and Rudney, H. (1983) Properties of HMGCoA reductase and its mechanism of action, in: 3-Hydroxy-3-methylglutaryl CoA Reductase (Sabine, J. R., Ed.) pp 57–75, CRC PRess Cleveland.

    Google Scholar 

  • Scharschmidt, M., Fisher, M. A., and Cleland, W. W. (1984) Variation of transition state structure as a function of the nucleotide in reactions catalyzed by dehydrogenases. 1. Liver alcohol dehydrogenase with benzyl alcohol and yeast aldehyde dehydrogenase with benzaldehyde. Biochemistry 23, 5471–5478.

    Article  PubMed  CAS  Google Scholar 

  • Sherban, D. G., Kennelly, P. J., Brandt, K. G.,&Rodwell, V. W. (1985) Rat liver 3 hydroxy-3-methylglutaryl-CoA reductase: catalysis of the reverse reaction and two half-reactions. J. Biol. Chem. 260, 12579–12585.

    PubMed  CAS  Google Scholar 

  • Yourno, J., and Ino, I. (1968) Purification and crystallization of histidinol dehydrogenase from Salmonella typhimuriumLT-2. J. Biol. Chem. 242, 3273–3276.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Grubmeyer, C. (1990). A Paradigm for Aldehyde Oxidation: Histidinol Dehydrogenase. In: Weiner, H., Wermuth, B., Crabb, D.W. (eds) Enzymology and Molecular Biology of Carbonyl Metabolism 3. Advances in Experimental Medicine and Biology, vol 284. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5901-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5901-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5903-6

  • Online ISBN: 978-1-4684-5901-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics