Skip to main content

Electromagnetic Resonance Induced Nonlinear Optical Phenomena

  • Chapter
Nonlinear Waves in Solid State Physics

Part of the book series: NATO ASI Series ((NSSB,volume 247))

  • 247 Accesses

Abstract

It is well known that efficient nonlinear optical interactions require strong nonlinear polarizations.1,2 This is achieved by increasing the nonlinear susceptibility and/or the electromagnetic field inside the nonlinear medium. The former requires a material study whereas the latter, in which we are interested, requires an electromagnetic study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Bloembergen, Nonlinear optics (Benjamin, New York, 1965).

    Google Scholar 

  2. R. Shen, The principles of nonlinear optics (Wiley Interscience, New York, 1984).

    Google Scholar 

  3. J. L. Coutaz, M. Nevière, E. Pic and R. Reinisch, Phys. Rev. B 32, 2227 (1985).

    Article  ADS  Google Scholar 

  4. J. L. Coutaz, J. Opt. Soc. Am. B 4, 105 (1987).

    Article  ADS  Google Scholar 

  5. R. Reinisch and M. Nevière, “Nonlinear surface polariton interactions: surface enhanced nonlinear optical effects” in Electromagnetic Surface Excitations, R. F. Wallis and G. I. Stegeman eds. (Springer Verlag, New York, 1986), pp. 232–260.

    Chapter  Google Scholar 

  6. J. L. Coutaz, D. Maystre, M. Nevière and R. Reinisch, Proc. 14th Congress of the International Commission for Optics (Québec), pp. 149-150, ICO (1987).

    Google Scholar 

  7. M. Nevière, J. L. Coutaz, D. Maystre, E. Pic and R. Reinisch, CLEO’86-IQEC’86 (San Francisco, Sept. 1986), p. 68.

    Google Scholar 

  8. D. Maystre, M. Nevière R. Reinisch and J. L. Coutaz, J. Opt. Soc. Am. B 5, 338 (1988).

    Article  ADS  Google Scholar 

  9. G. S. Agarwal and S. S. Jha, Phys. Rev. B 26, 482 (1982).

    Article  ADS  Google Scholar 

  10. K. Arya, Phys. Rev. B 29, 4451 (1984).

    Article  ADS  Google Scholar 

  11. G. A. Farias and A. A. Maradudin, Phys. Rev. B 30, 3002 (1984).

    Article  ADS  Google Scholar 

  12. R. Reinisch and M. Nevière, Phys. Rev. B 26, 5987 (1982).

    Article  ADS  Google Scholar 

  13. R. Reinisch and M. Nevière, Phys. Rev. B 28, 1870 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Nevière, R. Reinisch and D. Maystre, Phys. Rev. B 32, 3634 (1985).

    Article  ADS  Google Scholar 

  15. M. Nevière, P. Vincent, D. Maystre, R. Reinisch and J. L. Coutaz, J. Opt. Soc. Am. B 5, 330 (1988).

    Article  ADS  Google Scholar 

  16. H. Akhouayri, M. Nevière, P. Vincent and R. Reinisch, Proc. 14th Congress of the International Commission for Optics (Québec), pp. 239-240 (1987).

    Google Scholar 

  17. R. Reinisch, M. Nevière, H. Akhouayri, J. L. Coutaz, D. Maystre and E. Pic, Opt. Engineering 27, 961 (1988).

    Google Scholar 

  18. J. C. Quail and H. J. Simon, J. Opt. Soc. Am. B 5, 325 (1988).

    Article  ADS  Google Scholar 

  19. H. J. Simon, C. Huang, J. C. Quail and Z. Chen, Phys. Rev. B 38, 7408 (1988).

    Article  ADS  Google Scholar 

  20. Z. Chen and H. J. Simon, Opt. Lett. 13, 1008 (1988).

    Article  ADS  Google Scholar 

  21. H. J. Simon and Z. Chen, Phys. Rev. B 39, (1989).

    Google Scholar 

  22. R. Reinisch and G. Vitrant, Phys. Rev. B 39, 5775 (1989).

    Article  ADS  Google Scholar 

  23. G. I. Stegeman, IEEE J. Quantum Electron. QE-18, 1610 (1982).

    Article  ADS  Google Scholar 

  24. G. I. Stegeman, C. T. Seaton, W. M. Hetherington III, A. D. Boardman and P. Egan, in Electromagnetic Surface Excitations, R. F. Wallis and G. I. Stegeman eds. (Springer-Verlag, New York, 1986), p. 261.

    Chapter  Google Scholar 

  25. A. D. Boardman and P. Egan, in Electromagnetic Surface Excitations, R. F. Wallis and G. I. Stegeman eds. (Springer-Verlag, New York, 1986), p. 301.

    Chapter  Google Scholar 

  26. R. Reinisch, P. Arlot, G. Vitrant and E. Pic, Appl. Phys. Lett. 47, 1248 (1985).

    Article  ADS  Google Scholar 

  27. G. Arfken, Mathematical Methods for Physicists (Academic Press, New York, 1970).

    Google Scholar 

  28. L. S. Schwartz, Mathematical Methods for Physical Sciences (Addison-Wesley, Reading, Mass., 1966).

    Google Scholar 

  29. R. Petit, “A tutorial introduction” in Electromagnetic Theory of Gratings, R. Petit ed. (Springer-Verlag, New York, 1980), pp. 1–50.

    Chapter  Google Scholar 

  30. N. Bloembergen, R. K. Chang, S. S. Jha and C. H. Lee, Phys. Rev. 174, 813 (1968).

    Article  ADS  Google Scholar 

  31. J. E. Sipe, V. C. Y. So, M. Fukui and G. I. Stegeman, Phys. Rev. B 21, 4389 (1980).

    Article  ADS  Google Scholar 

  32. J. E. Sipe and G. I. Stegeman, “Nonlinear optical response of metal surfaces” in Surface polaritons, electromagnetic waves at surfaces and interfaces, V. M. Agranovich and D. L. Mills eds. (North Holland, Amsterdam, 1982), pp. 661–701.

    Google Scholar 

  33. D. Maystre, M. Nevière and R. Reinisch, Appl. Phys. A 39, 115 (1986).

    Article  ADS  Google Scholar 

  34. H. R. Jensen, K. Pedersen and D. Keller, Proceedings of the Int. Conf. on nonlinear optics NLO’88, Ireland 1988.

    Google Scholar 

  35. D. Maystre, “Integral Methods” in Electromagnetic theory of gratings, R. Petit ed. (Springer-Verlag, New York, 1980), pp. 63–100.

    Chapter  Google Scholar 

  36. D. Maystre, “General study of grating anomalies from electromagnetic surface modes” in Electromagnetic surface modes, A. D. Boardman ed. (Wiley, New York, 1982), pp. 661–724.

    Google Scholar 

  37. M. Nevière, P. Vincent and R. Petit, Rev. Optique 5, 65 (1974).

    Article  Google Scholar 

  38. P. Vincent, “Differential methods” in Electromagnetic theory of gratings, R. Petit ed. (Springer-Verlag, New York, 1980), pp. 101–121.

    Chapter  Google Scholar 

  39. J. L. Coutaz, D. Maystre, M. Nevière and R. Reinisch, J. Appl. Phys. 62, 1529 (1987).

    Article  ADS  Google Scholar 

  40. The characteristics of silver corresponding to all the experiments performed with d = 1.53. üm periodicity gratings lead to: ε2(ω) = −43.6 + 2j; ε2(2ω) = −8.4 + 0.1j. The best fit is obtained for A = 2.9 and B = 0.4245.

    Google Scholar 

  41. J. V. Moloney and H. M. Gibbs, Phys. Rev. Lett. 48, 1607 (1982).

    Article  ADS  Google Scholar 

  42. J. V. Moloney, M. R. Belie and H. M. Gibbs, Opt. Commun. 41, 379 (1982).

    Article  ADS  Google Scholar 

  43. J. V. Moloney, M. Sargent III and H. M. Gibbs, Opt. Commun. 44, 289 (1983).

    Article  ADS  Google Scholar 

  44. J. V. Moloney, Opt. Acta 29, 1503 (1982).

    Article  ADS  Google Scholar 

  45. E. M. Wright, W. J. Firth and I. Galbraith, J. Opt. Soc. Am. B 2, 383 (1985).

    Article  ADS  Google Scholar 

  46. W. J. Firth, I. Galbraith and E. M. Wright, J. Opt. Soc. Am. B 2, 1005 (1985).

    Article  ADS  Google Scholar 

  47. N. N. Rozanov, Sov. Phys. JETP 53, 47 (1981).

    Google Scholar 

  48. N. N. Rozanov and V. E. Semenov, Opt. Spectrosc. 48, 59 (1980).

    ADS  Google Scholar 

  49. N. N. Rozanov and V. E. Semenov, Opt. Commun. 38, 435 (1981).

    Article  ADS  Google Scholar 

  50. N. N. Rozanov, V. E. Semenov and G. V. Khodova, Sov. J. Quantum Electron. 12, 193 and 198 (1982).

    Article  ADS  Google Scholar 

  51. D. Weaire, J. P. Kermode and V. M. Dwyer, Opt. Commun. 55, 3 (1985).

    Article  Google Scholar 

  52. D. Weaire and J. P. Kermode, J. Opt. Soc. Am. B 3, 1706 (1986).

    Article  ADS  Google Scholar 

  53. U. Olin and O. Sahlén, J. Opt. Soc Am. B 4, 319 (1987).

    Article  ADS  Google Scholar 

  54. U. Olin, J. Opt. Soc. Am. B 5, 20 (1988).

    Article  ADS  Google Scholar 

  55. G. M. Carter and Y. J. Chen, Appl. Phys. Lett. 42, 643, (1983).

    Article  ADS  Google Scholar 

  56. G. Vitrant, P. Arlot and R. Reinisch, SPIE 800, 169 (1987).

    ADS  Google Scholar 

  57. G. I. Stegeman, G. Assanto, R. Zanoni, C. T. Seaton, E. Garmire, A. A. Maradudin, R. Reinisch and G. Vitrant, Appl. Phys. Lett. 52, 869 (1988).

    Article  ADS  Google Scholar 

  58. G. Vitrant, R. Reinisch, J. Cl. Paumier, G. Assanto and G. Stegeman, Nonlinear guided wave phenomena: physics and applications, Topical Meeting, p. 167, (Houston, USA) (1989).

    Google Scholar 

  59. H. M. Gibbs, Controlling light with light (Academic Press, New York, 1985).

    Google Scholar 

  60. J. W. Nibler and G. V. Knighten, in Raman Spectroscopy of Gases and Liquids, A. Weber ed. (Springer-Verlag, New York, 1979), p. 243.

    Google Scholar 

  61. G. Stegeman, private communication.

    Google Scholar 

  62. S. Maneuf, A. Barthélémy and Cl. Froehly, J. Optics (Paris) 17, 139 (1986).

    Article  ADS  Google Scholar 

  63. J. Marburger and F. Felber, Phys. Rev. A 17, 335 (1978).

    Article  ADS  Google Scholar 

  64. F. A. P. Tooley, S. D. Smith and C. T. Seaton, Appl. Phys. Lett. 43, 807 (1983).

    Article  ADS  Google Scholar 

  65. H. F. Harmuth, Journal of Mathematics and Physics 36, 269 (1957).

    MathSciNet  MATH  Google Scholar 

  66. M. Kubicek, Algorithm 502, ACM TOMS 2, 98 (1976).

    MATH  Google Scholar 

  67. G. Vitrant, Thèse d’Etat, INP Grenoble (France) (1989).

    Google Scholar 

  68. A. Yariv, IEEE J. Quantum Electron. QE-9, 919 (1973).

    Article  ADS  Google Scholar 

  69. H. Kogelnik, in Integrated Optics, T. Tamir ed. (Springer-Verlag, New York, 1979), Chap. 2.

    Google Scholar 

  70. G. Vitrant and P. Arlot, J. Appl. Phys. 61, 4744 (1987).

    Article  ADS  Google Scholar 

  71. H. Chelli, A. Koster, N. Paraire, F. Pardo, H. Sauer, M. Carton and S. Laval, Rev. Phys. Appl. 22, 1273 (1987).

    Article  Google Scholar 

  72. W. Lukosz, P. Pirani and V. Briguet, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian and S. D. Smith eds. (Springer-Verlag, Berlin, 1986), p. 109.

    Chapter  Google Scholar 

  73. G. Assanto, B. Svensson, D. Kuchibhatla, U. J. Gibson, C. T. Seaton and G. I. Stegeman, Opt. Lett. 11, 644 (1986).

    Article  ADS  Google Scholar 

  74. P. Martinot, A. Koster and S. Laval, IEEE J. Quantum Electron. QE-21, 1140 (1985).

    Article  ADS  Google Scholar 

  75. C. Liao and G. I. Stegeman, Appl. Phys. Lett. 44, 164, (1984).

    Article  ADS  Google Scholar 

  76. C. Liao, G. I. Stegeman, C. T. Seaton, R. L. Shoemaker, J. D. Valera and H. G. Winful, J. Opt. Soc. Am. A 2, 590 (1985).

    Article  ADS  Google Scholar 

  77. G. Vitrant, R. Reinisch, J. Cl. Paumier, G. Assanto and G. Stegeman, Opt. Lett. 14, 898 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Reinisch, R., Vitrant, G., Nevière, M. (1990). Electromagnetic Resonance Induced Nonlinear Optical Phenomena. In: Boardman, A.D., Bertolotti, M., Twardowski, T. (eds) Nonlinear Waves in Solid State Physics. NATO ASI Series, vol 247. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5898-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5898-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5900-5

  • Online ISBN: 978-1-4684-5898-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics