Skip to main content

Solitons in Optical Fibres

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 247))

Abstract

This chapter aims to present a review of some central properties of nonlinear short pulse effects in conventional silica optical fibres. Solitons are the key feature of such propagation and will form a central theme for the chapter. In particular we shall examine soliton generation and interaction with linear and nonlinear effects. There will be an underlying drive towards the potential exploitation of soliton effects but the emphasis will be on the fundamental physics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.W. Snyder and J.D. Love, Optical Waveguide Theory, Chapman and Hall, London (1983).

    Google Scholar 

  2. A. Hasegawa and F. Tappert, Transmission of Stationary Nonlinear Optical Pulses in Dispersive Dielectric Fibres 1. Anomalous Dispersion, Appl Phys Lett 23 142–144 (1973).

    Article  ADS  Google Scholar 

  3. L.F. Mollenauer, R.H. Stolen and J.P. Gordon, Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibres, Phys Rev Lett 45 1095–1098 (1980).

    Article  ADS  Google Scholar 

  4. M. Nakazawa, Y. Kimura and K. Suzuki, Soliton Amplification and Transmission with Er 3+ Doped Fibre Repeater Pumped by GalnAsP Laser Diode, Elect Lett 25 199–200 (1989).

    Article  Google Scholar 

  5. V.E. Zakharov and A.B. Shabat, Exact Theory of Two Dimensional Self Focusing and One Dimensionsal Self Modulation of Nonlinear Waves in Nonlinear Media, Sov Phys JETP 34 62–69 (1972).

    MathSciNet  ADS  Google Scholar 

  6. J. Satsuma and N. Yajima, Initial Value Problems of One Dimensional Self-Modulation of Nonlinear Waves in Dispersive Media, Prog Theor Phys Suppl 55 284–306 (1974).

    Article  MathSciNet  Google Scholar 

  7. K.J. Blow and N.J. Doran, Bandwidth Limits of Nonlinear (Soliton) Optical Communication Systems, Elect Lett 19 429–430 (1983).

    Article  Google Scholar 

  8. C. Desem, Ph.D Thesis, Univeristy of New South Wales, Sydney, Australia (1988).

    Google Scholar 

  9. K.J. Blow and N.J. Doran, Multiple Dark Soliton Solutions of the Nonlinear Schrodinger Equation, Phys Lett A 107A 55 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  10. A.M. Weiner, J.P. Heritage, R.J. Hawkins, R.N. Thurston, E.M. Kirschner, D.E. Laird and W.J. Tomlinson, Experimental Observation of the Fundamental Dark Soliton in Optical Fibres, Phys Rev Lett 61 2445–2448 (1988).

    Article  ADS  Google Scholar 

  11. C. Froely, B. Colombeau and M. Vampouille, in Progress in Optics, Vol 10 edited by E. Wolf (North-Holland, Amsterdam, 1983), pp 115–121.

    Google Scholar 

  12. Y.C. Ma, The Perturbed Plane Wave Solutions of the Cubic Schrodinger Equation, SIAM 60 43–48 (1979).

    Google Scholar 

  13. T.B. Benjamin and J.E. Feir, The Disintegration of Wave Trains in Deep Water Part 1. Theory, J Fluid Mech 27 417–430 (1967).

    Article  ADS  MATH  Google Scholar 

  14. D. Anderson and M. Lisak, Modulational Instability of Coherent Optical Fibre Transmission Signals, Optics Lett 9 468 (1984).

    Article  ADS  Google Scholar 

  15. E. Fermi, J. Pasta and S. Ulam, Collected Papers of Enrico Fermi, ed. E. Segre 2 978 (1965).

    Google Scholar 

  16. K.J. Blow and D. Wood, Theoretical Description of Transient Stimulated Raman Scattering in Optical Fibres, IEEE J Quantum Electronics 25 2665–2673 (1989).

    Article  ADS  Google Scholar 

  17. Elements of Soliton Theory, G.R. Lamb, Wiley Interscience, New York (1980).

    Google Scholar 

  18. D. Cotter, Stimulated Brillouin Scattering in Monomode Optical Fibre, J Optical Commun 4 10–19 (1983).

    Article  Google Scholar 

  19. R.H. Stolen, C. Lee and R.K. Jain, Developement of the Stimulated Raman Spectrum in Single-Mode Silica Fibres, J Opt Soc Am B 1, 652–657 (1984).

    Article  ADS  Google Scholar 

  20. K.J. Blow and B.P. Nelson, Observation of Stimulated Raman Scattering and Nonlinear Pulse Broadening at 1.32μm in Monomode Optical Fibres JEE PROC J 134 161–162 (1987).

    Google Scholar 

  21. E.M. Dianov, A.Y.A. Karasik, P.V. Mamyshev A.M. Prokhorov, V.N. Serkin, M.F. Stel’makh and A.A. Fomichev, Stimulated Raman Conversion of Multisoliton Pulses in Quartz Optical Fibres, Pisma Zh Eksp Teor Fiz 41 242–244 (1985).

    Google Scholar 

  22. F.M. Mitschke and L.F. Mollenauer, Discovery of the Soliton Self Frequency Shift, Optics Lett 11 659 (1986).

    Article  ADS  Google Scholar 

  23. J.P. Gordon, Theory of the Soliton Self Frequency Shift, Optics Lett 11 662 (1986).

    Article  ADS  Google Scholar 

  24. A.S. Gouveia-Neto, A.S.L. Gomes and J.R. Taylor, High Efficiency Single Pass Soliton-Raman Compression in an Optical Fibre around 1.4μm, Optics Letts 12 1035–1037 (1987).

    Article  ADS  Google Scholar 

  25. A.S. Gouveia-Neto, A.S.L. Gomes, J.R. Taylor, Femtosecond Soliton Raman Generation, IEEE J Quantum Electronics 24 332–340 (1988).

    Article  ADS  Google Scholar 

  26. K.J. Blow, N.J. Doran and D. Wood, Trapping of Energy into Solitary Waves in Amplified Nonlinear Dispersive Systems, Optics Lett 12 1011–1013 (1987).

    Article  ADS  Google Scholar 

  27. K.J. Blow, N.J. Doran and D. Wood, Generation and Stabilisation of Short Soliton Pulses in the Amplified Nonlinear Schrodinger Equation, J Opt Soc Am B 5 381–390 (1988).

    Article  ADS  Google Scholar 

  28. R.H. Stolen, J.P. Gordon, W.J. Tomlinson and H.A. Haus, Raman Response Function of Silica-Core Fibres, J Opt Soc Am B 6 1159–1166 (1989).

    Article  ADS  Google Scholar 

  29. N.J. Doran, Solitons in Optical Fibres and Nonlinear Fibre Devices, Paper WA6 IQEC (1988).

    Google Scholar 

  30. S.R. Friberg, A.M. Weiner, Y. Silberberg, B.G. Sfez and P.W. Smith, Femtosecond Switching in a Dual-Core Fibre Nonlinear Coupler, Optics Lett 13 904–906 (1988).

    Article  ADS  Google Scholar 

  31. K.J. Blow, N.J. Doran and B.K. Nayar, Experimental Demonstration of Optical Soliton Switching in an All-Fibre Nonlinear Sagnac Interferometer, Optics Lett 14 754–756 (1989).

    Article  ADS  Google Scholar 

  32. M.N. Islam, E.R Sunderman, R.H. Stolen, W. Pleibel and J.R. Simpson, Soliton Switching in a Fibre Nonlinear Loop Mirror, Optics Letts 14 811–813 (1989).

    Article  ADS  Google Scholar 

  33. N.J. Doran and K.J. Blow, Solitons in Optical Communications, IEEE J Quantum Electronics 19 1883–1888 (1983).

    Article  ADS  Google Scholar 

  34. F.M. Mitschke and L.F. Mollenauer, Stabilizing the Soliton Laser, IEEE J Quantum Electronics 22 2242–2250 (1986).

    Article  ADS  Google Scholar 

  35. K.J. Blow and B.P. Nelson, Improved Modelocking of an F-Centre Laser with a Nonlinear Nonsoliton External Cavity, Optics Lett 13 1026–1029 (1988).

    Article  ADS  Google Scholar 

  36. H.A. Haus, A Theory of Forced Mode Locking, IEEE J Quantum Electronics 11 323–330 (1975).

    Article  ADS  Google Scholar 

  37. P.N. Kean, X. Zhu, D.W. Crust, R.S. Grant, N. Langford and W. Sibbett, Enhanced Modelocking of Colour Centre Lasers, Optics Lett 14 39–41 (1989).

    Article  ADS  Google Scholar 

  38. J. Goodberlet, J. Wang, J.G. Fujimoto and P.A. Schulz, Femtosecond Passively Modelocked Ti:Al 2 O 3 Laser with a Nonlinear External Cavity, Optics Lett 20 1125–1127 (1989).

    Article  ADS  Google Scholar 

  39. L.F. Mollenauer and K. Smith, Demonstration of Soliton Transmission over more than 4000km in Fibre with Loss Periodically Compensated by Raman Gain, Optics Lett 13 675–677 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Blow, K.J., Doran, N.J. (1990). Solitons in Optical Fibres. In: Boardman, A.D., Bertolotti, M., Twardowski, T. (eds) Nonlinear Waves in Solid State Physics. NATO ASI Series, vol 247. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5898-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5898-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5900-5

  • Online ISBN: 978-1-4684-5898-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics