Skip to main content

Determination of Atmospheric Ozone Profiles at 68N and 79N with a Daylight Lidar Instrument

  • Chapter
Optoelectronics for Environmental Science

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 54))

  • 85 Accesses

Abstract

The stratospheric ozone layer has recently received increased attention due to the globally observed decrease of the total ozone concentration1 and the appearance of the so called ozone hole over Antarctica. Most of the information on global ozone is based on measurements of the ozone column density of the atmosphere. The vertical distribution of ozone can be measured by a light radar or lidar (Light Detection And Ranging). Laser-produced short light pulses are sent vertically into the atmosphere. The light is backscattered by the air molecules (Rayleigh scattering) and the signals of each pulse are recorded time-resolved, thereby providing the altitude resolution. For measurements of the ozone concentration the differential absorption principle is used (DIAL = Differential Absorption Lidar): light pulses at two wavelengths are emitted, which are chosen such, that one is partially absorbed by the ozone molecules and the other not. But the wavelength difference should be small enough, so that both waves experience the same backscattering process. Then many unknowns in the lidar equation, like atmospheric and instrumental parameters, can be eliminated. A recent description of the application of this principle to lidar ozone measurements is given by Steinbrecht et al.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Present State of Knowledge of the Upper Atmosphere 1988: An Assessment Report (“Ozone Trend Panel Report”), NASA Reference Publication 1208 (1988)

    Google Scholar 

  2. R. J. Paur and A. M. Bass, The Ultraviolet Cross Sections of Ozone: II. Results and Temperature Dependence, in: “Atmospheric Ozone”, Proc. Quadr. Ozone Symp., C. S. Zerefos and A. Ghazi, eds., Dordrecht (1985)

    Google Scholar 

  3. N. Bloembergen, Nonlinear Optics, Benjamin, New York (1977)

    Google Scholar 

  4. A. J. Krueger and R. A. Minzner, A Mid-Latitude Ozone Model for the

    Google Scholar 

  5. U.S. Standard Atmosphere, JGR 81, 4477 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Neuber, R. (1990). Determination of Atmospheric Ozone Profiles at 68N and 79N with a Daylight Lidar Instrument. In: Martellucci, S., Chester, A.N. (eds) Optoelectronics for Environmental Science. Ettore Majorana International Science Series, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5895-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5895-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5897-8

  • Online ISBN: 978-1-4684-5895-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics