Skip to main content

Mechanisms for Pyrrolizidine Alkaloid Activation and Detoxification

  • Chapter
Biological Reactive Intermediates IV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 283))

Abstract

The pyrrolizidine alkaloids (PAs) constitute a large group of hepatotoxic and carcinogenic plant constituents of wide geographic and botanical distribution. These alkaloids are responsible for the death of livestock throughout the world and for occasional human poisonings following the consumption of contaminated foods or the injudicious use of herbal medicines (Bull et al., 1968; Mattocks, 1986; Hirano, 1981; Huxtable, 1980; Peterson and Culvenor, 1983). PAs are relatively nontoxic but are bioactivated in vivo primarily via the liver, through enzymatic dehydrogenation to form highly reactive pyrrole- type metabolites. It is thought that PAs are initially converted to the corresponding dehydropyrrolizidine alkaloids (PA pyrroles) which then can either alkylate protein, DNA or other cellular nucleophiles (Hsu et al. 1975; Reed et al. 1988; Wickramanayake et al., 1985) or be hydrolyzed to the more stable pyrrolic alcohol, such as (R)-6,7-dihydro-7-hydroxy-l-hydroxymethy1-5H-pyrrolizidine (DHP) in the case of retronecine or heliotridine based PAs (Jago et al., 1979; Kedzierski and Buhler, 1985, 1986; Mattocks, 1986; Mattocks and White, 1971). PAs also can be oxidized in vivo to relatively nontoxic PA N-oxides and hydrolyzed to the corresponding amino alcohol (Kedzierski and Buhler, 1986; Mattocks, 1986; Ramsdell et al., 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Buhler, D.R. and Kedzierski, B. (1986). Biological reactive intermediates of pyrrolizidine alkaloids. In Biological Reactive Intermediates ( J.J. Kocsis, D.J. Jollow, C.M. Witmer, J.O. Nelson and R. Snyder, eds.), pp. 611–620, Plenum Publishing Corp., NY.

    Chapter  Google Scholar 

  • Bull, L.B., Culvenor, C.C.J. and Dick, A.T. (1968). The Pyrrolizidine Alkaloids, North-Holland, Amsterdam.

    Google Scholar 

  • Culvenor, C.C.J., Edgar J.A., Smith, L.W. and Tweddale, H.J. (1970). Dihydropyrrolizidines. III. Preparation and reactions of derivatives related to pyrrolizidine alkaloids, Aust. J. Chem. 23, 1853.

    Article  CAS  Google Scholar 

  • Guengerich, F.P. (1977). Separation and purification of multiple forms of microsomal cytochrome P-450. J. Biol. Chem. 252, 3970–3979.

    CAS  PubMed  Google Scholar 

  • Hirono, I. (1981). Natural carcinogenic products of plant origin. C.R.C. Crit. Rev. Toxicol. 8, 235.

    Article  Google Scholar 

  • Huxtable, R.J. (1980). Herbal teas and toxins: Novel aspects of pyrrolizidine poisoning in the United States. Persp. Biol. Med. 24, 1.

    CAS  Google Scholar 

  • Jago, M.V., Edgar, J.A., Smith, L.W. and Culvenor, C.C.J. (1979). Metabolic conversion of heliotridine-based pyrrolizidine alkaloids to dehydroheliotridine. Mol. Pharmacol. 6, 402.

    Google Scholar 

  • Karchesy, J.J. and Deinzer, M.L. (1981). Kinetics of alkylation reactions of pyrrolizidine alkaloid derivatives. Heterocycles, 16, 631.

    Article  CAS  Google Scholar 

  • Kedzierski, B. and Buhler, D.R. (1986). Method for determination of pyrrolizidine alkaloids and their metabolites by high-performance liquid chromatography. Anal. Biochem. 152, 59.

    Article  CAS  PubMed  Google Scholar 

  • Kedzierski, B. and Buhler, D.R. (1985). Configuration of necine pyrroles-toxic metabolites of pyrrolizidine alkaloids. Toxicol. Lett. 25, 115.

    Article  CAS  PubMed  Google Scholar 

  • Mattocks, A.R. and White, I.N.H. (1971). The conversion of pyrrolizidine alkaloids to N-oxides and to dihydropyrrolizine derivations by rat-liver microsomes in vitro. Chem.-Biol. Inter. 3, 383.

    Article  CAS  Google Scholar 

  • Mattocks, A.R. (1986). Chemistry and Toxicology of Pyrrolizidine Alkaloids, Academic Press, New York, NY. 393 p.

    Google Scholar 

  • Miranda, C.L., Cheeke, P.R. and Buhler, D.R. (1980). Comparative effects of the pyrrolizidine alkaloids jacobine and monocrotaline on hepatic drug metabolizing enzymes in the rat. Res. Commun. Chem. Pharmcol. 29, 573.

    CAS  Google Scholar 

  • Peterson, J.E. and Culvenor, C.C.J. (1983). Hepatotoxic pyrrolizidine alkaloids. In: Handbook of Natural Toxins. Vol. 1, Plant and Fungal Toxins, R.F. Keeler, K.R. Van Kampen and L.F. James, eds., Academic Press, New York.

    Google Scholar 

  • Ramsdell, H.S., Kedzierski, B. and Buhler, D.R. (1987). Microsomal metabolism of pyrrolizidine alkaloids from Senecio jacobaea. Isolation and quantification of 6,7-dihydro-7-hydroxy-l-hydroxymethy1–5H-pyrrolizidine and N-oxides by high performance liquid chromatography. Drug Metab. Dispos. 15, 32.

    CAS  Google Scholar 

  • Reed, R.L. and Buhler, D.R. (1988). The synthesis of 3H-putrescine and subsequent biosynthesis of 3H-jacobine, a pyrrolizidine alkaloid from Senecio jacobaea. J. Labelled Cmpds. and Radiopharm. 25, 1041–1047.

    Article  CAS  Google Scholar 

  • Reed, R.L., Ahern, K.G., Pearson, G.D. and Buhler, D.R. (1988). Crosslinking of DNA by dehydroretronecine, a metabolite of pyrrolizidine alkaloids. Carcinogenesis 9, 1355–1361.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, K.A., Seymour, J.L., Hsia, M.T. and Allen, J.R. (1977). Covalent interaction of dehydroretronecine, a carcinogenic metabolite of the pyrrolizidine alkaloid monocrotaline with cysteine and glutathione. Cancer Res. 37, 3141.

    CAS  PubMed  Google Scholar 

  • Shu, I.C., Robertson, A.A., Shumaker, R.C. and Allen, J.R. (1975). Binding of tritiated dehydroretrocine to macromolecules. Res. Commmun. Chem. Pathol. Pharmcol. 11, 99–106.

    Google Scholar 

  • Wickramanayake, P.P., Arbogast, B.L., Buhler, D.R., Deinzer, M.L. and Burlingame, A.L. (1985). Alkylation of nucleosides and nucleotides by dehydroretronecine: Characterization of adducts by liquid secondary ion mass spectrometry. J. Am. Chem. Soc. 107, 2485–2488.

    Article  CAS  Google Scholar 

  • Williams, D.E., Reed, R.L., Kedzierski, B., Guengerich, F.P. and Buhler, D.R. (1989a). Bioaetivation and detoxication of the pyrrolizidine alkaloid senecionine by cytochrome P-450 enzymes in rat liver. Drug Metab. Dispos. 17, 387–392.

    CAS  PubMed  Google Scholar 

  • Williams, D.E., Reed, R.L., Kedzierski, B., Ziegler, D.M. and Buhler, D.R. (1989b). The role of flavin-containing monooxygenase in the N-oxidation of the pyrrolizidine alkaloid senecionine. Drug. Metab. Dispos. 17, 380–386.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Buhler, D.R., Miranda, C.L., Kedzierski, B., Reed, R.L. (1991). Mechanisms for Pyrrolizidine Alkaloid Activation and Detoxification. In: Witmer, C.M., Snyder, R.R., Jollow, D.J., Kalf, G.F., Kocsis, J.J., Sipes, I.G. (eds) Biological Reactive Intermediates IV. Advances in Experimental Medicine and Biology, vol 283. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5877-0_75

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5877-0_75

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5879-4

  • Online ISBN: 978-1-4684-5877-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics