Skip to main content

Formation and Reactivity of a Quinone Methide in Biological Systems

  • Chapter
Biological Reactive Intermediates IV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 283))

Abstract

The formation of reactive electrophilic intermediates during xenobiotic metabolism which interact with cellular macromolecules is the foundation of current hypotheses on the mechanism of toxicity and carcinogenicity of many chemicals. Aromatic compounds which contain one or more oxygen atoms in functional groups attached to the ring have been extensively studied. These compounds include phenols, hydroquinones and catechols which are oxidized to quinones. Quinones are cytotoxic by virtue of their ability to redox cycle and generate reactive oxygen species and also by their ability to alkylate cellular macromolecules. More recently, compounds such as acetaminophen and phenetidine have been shown to form quinoneimines which are also highly cytotoxic (Dahlin, D.C. et al., 1984; Ross, D. et al., 1985). It is now becoming apparent that other derivatives of the quinonoid moiety may also be highly reactive; for example, quinone methides and imine methides (Mizutani, T. et al., 1982; Yost, G.S., 1989). For comparison, the chemical structures of a quinone, quinoneimine and quinone methide are shown in Figure 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Becker, H.-D. (1965). Quinone dehydrogenation. I. The oxidation of monohydric phenols. J. Org. Chem. 30, 982–989.

    Article  CAS  Google Scholar 

  • Brown, Jr., K.S. and Baker, P.N. (1971). Stable ortho-and para-naphthaquinone methides. Tetrahedron Lett. No. 38, 3505–3508.

    Article  Google Scholar 

  • Clark, G.C. (1988). Acute inhalation toxicity of eugenol in rats. Arch. Toxicol. 62, 381–386.

    Article  CAS  PubMed  Google Scholar 

  • Dahlin, D.C., Miwa, G.T., Lu, A.Y.H. and Nelson, S.D. (1984). N-acetyl-pbenzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc. Natl. Acad. Sci. USA 81, 1327–1331.

    Article  CAS  Google Scholar 

  • Dyall, L.K. and Winstein, S. (1971). Nuclear magnetic resonance spectra and characterization of some quinone methides. J. Am. Chem. Soc. 94, 2196–2199.

    Article  Google Scholar 

  • Filar, L.J. and Winstein, S. (1961). Preparation and behavior of simple quinone methides. Tetrahedron Lett. No. 25 9–16.

    Google Scholar 

  • Fotos, P.G., Woolverton, C.J., Van Dyke, K. and Powell, R.L. (1987). Effects of eugenol on polymorphonuclear cell migration and chemi-luminescence. J. Dent. Res. 66, 774–777.

    CAS  Google Scholar 

  • IARC (1985). Eugenol. IARC Monogr. Eval. Carcinog. Risk Chem. Hum. 36, 75–97.

    Google Scholar 

  • Jurd, L. (1977). Quinones and quinone-methides. I. Cyclization and dimerisation of crystalline ortho-quinone methides from phenol oxidation reactions. Tetrahedron 33, 163–168.

    Article  CAS  Google Scholar 

  • Jurd, L. Fye, R.L. and Morgan, Jr., J. (1979). New types of insect chemo-sterilants. Benzylphenols and benzy1–1,3-benzodioxole derivatives as additives to housefly diet. J. Agr. Food Chem. 27, 1007–1016.

    Article  CAS  Google Scholar 

  • Kozam, G. (1977). The effect of eugenol on nerve transmission. Oral Surg. 44, 799–805.

    Article  CAS  PubMed  Google Scholar 

  • LaVoie, E.J., Adams, J.D., Reinhardt, J., Rivenson, A. and Hoffman, D. (1986). Toxicity studies on clove cigarette smoke and constituents of clove: determination of the LD50 of eugenol by intratracheal installation. Arch. Toxicol. 59, 78–81.

    CAS  Google Scholar 

  • Leary, G. (1972). Chemistry of reactive lignin intermediates. I. Transients in coniferyl alcohol photolysis. J. Chem. Soc. Perkin Trans. 2 5, 640–642.

    Google Scholar 

  • Marino, A.A. and Mitchell, J.T. (1972). Lung damage in mice following intraperitoneal injection of butylated hydroxytoluene. Proc. Soc. Exp. Biol. Med. 140, 122–125.

    CAS  PubMed  Google Scholar 

  • Miller, E.C., Swanson, A.B., Phillips, D.H., Fletcher, T.L., Liem, A. and Miller, J.A. (1983). Structure-activity studies of the carcinogenicities in the mouse and rat of some naturally occurring and synthetic alkenyl-benzene derivatives related to safrole and estragole. Cancer Res. 43, 1124–1134.

    CAS  PubMed  Google Scholar 

  • Mizutani, T., Ishida, I., Yamamoto, K. and Tajima, K. (1982). Pulmonary toxicity of butylated hydroxytoluene and related alkylphenols: Structural requirements for toxic potency in mice. Toxicol. Appl. Pharmacol. 62, 273–281.

    Article  CAS  Google Scholar 

  • Mizutani, T. Nomura, H., Nakanishi, K. and Fujita, S. (1987). Hepatotoxicity of butylated hydroxytoluene and its analogs in mice depleted of hepatic glutathione. Toxicol. Appl. Toxicol. 87, 166–176.

    CAS  Google Scholar 

  • Moore, H.W., Czerniak, R. and Hamdan, A. (1986). Natural quinones as quinonemethide precursors–ideas in rational drug design. Drugs Exptl. Clin. Res. 12, 475–494.

    CAS  Google Scholar 

  • Morbidity and Mortality Weekly Report (1985). Illnesses possibly associated with smoking clove cigarettes. Vol. 34, pp. 297–299.

    Google Scholar 

  • Nakagawa, Y., Tayama, K, Nakao, T. and Hiraga, K. (1984). On the mechanism of butylated hydroxytoluene-induced hepatic toxicity in rats. Biochem. Pharmacol. 33, 2669–2674.

    Article  CAS  PubMed  Google Scholar 

  • Ross, D., Larsson, R., Norbeck, K., Ryhage, R. and Moldéus, P. (1985). Characterization and mechanism of formation of reactive products formed during peroxidase-catalyzed oxidation of p-phenetidine. Mol. Pharmacol. 27, 277–286.

    CAS  PubMed  Google Scholar 

  • Siegel, S.M. (1956). The biosynthesis of lignin: Evidence for the participation of celluloses as sites for oxidative polymerization of eugenol. J. Am. Chem. Soc. 78, 1753–1755.

    Article  CAS  Google Scholar 

  • Sinha, B.K. and Gregory, J.L. (1981). Role of one-electron and two-electron reduction products of adriamycin and daunomycin in deoxyribonucleic acid binding. Biochem. Pharmacol. 30, 2626–2629.

    CAS  Google Scholar 

  • Suzuki, Y., Sugiyama, K. and Furuta, H. (1985). Eugenol-mediated super-oxide generation and cytotoxicity in guinea pig neutrophils. Japan. J. Pharmacol. 39, 381–386.

    Article  CAS  Google Scholar 

  • Takahashi, O. and Hiraga, K. (1978). Dose-response study of hemorrhagic death by dietary butylated hydroxytoluene (BHT) in male rats. Toxicol. Appl. Pharmacol. 43, 399–406.

    CAS  Google Scholar 

  • Thompson, D., Norbeck, K., Olsson, L.-I., Constantin-Teodosiu, D., Van der Zee, J. and Moldéus, P. (1989). Peroxidase-catalyzed oxidation of eugenol: Formation of a cytotoxic metabolite(s). J. Biol. Chem. 264, 1016–1021.

    CAS  PubMed  Google Scholar 

  • Thompson, D., Constantin-Teodosiu, D., Norbeck, K., Svensson, B. and Moldéus, P. (1989). Metabolic activation of eugenol by myeloperoxidase and polymorphonuclear leukocytes. Chem. Res. Toxicol. 2, 186–192.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, D., Constantin-Teodosiu, D., Egestad, B., Mickos, H. and Moldéus, P. (1990). Formation of glutathione conjugates during oxidation of eugenol by microsomal fractions of rat liver and lung. Biochem. Pharmacol. (in press).

    Google Scholar 

  • Thompson, D., Constantin-Teodosiu, D. and Moldéus, P. (1990). Metabolism and cytotoxicity of eugenol in isolated rat hepatocytes. Chem-Biol. Interactions (manuscript submitted).

    Google Scholar 

  • Trowbridge, H., Edwall, L. and Panopoulos, P. (1982). Effect of zinc oxide-eugenol and calcium hydroxide on intradental nerve activity. J.Endodontics 8, 403–406.

    Article  CAS  Google Scholar 

  • Turner,A.B. (1964). Quinone Methides. Q. Rev. Chem. Soc. Lond. 18, 347–360.

    Google Scholar 

  • Wagner, H.-U. and Gompper, R. (1972). Quinone methides. In: The Chemistry of Quinonoid Compounds, S. Patai (ed.), pp. 1145–1178, Wiley, NY.

    Google Scholar 

  • Webb, Jr., J.G. and Busse11, N.E. (1981). Comparison of the inflammatory response produced by commercial eugenol and purified eugenol. J. Dent. Res. 60, 1724–1728.

    Article  PubMed  Google Scholar 

  • Yost, G.S. (1989). Mechanisms of 3-methylindole pneumotoxicity. Chem. Res. Toxicol. 2, 273–279.

    Article  CAS  PubMed  Google Scholar 

  • Zanarotti, A. (1985). Synthesis and reactivity of vinyl quinone methides. J. Org. Chem. 50, 941–945.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Thompson, D., Moldéus, P. (1991). Formation and Reactivity of a Quinone Methide in Biological Systems. In: Witmer, C.M., Snyder, R.R., Jollow, D.J., Kalf, G.F., Kocsis, J.J., Sipes, I.G. (eds) Biological Reactive Intermediates IV. Advances in Experimental Medicine and Biology, vol 283. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5877-0_74

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5877-0_74

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5879-4

  • Online ISBN: 978-1-4684-5877-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics