Skip to main content

Bioactivation of Xenobiotics by Flavin-Containing Monooxygenases

  • Chapter
Biological Reactive Intermediates IV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 283))

Abstract

Flavoproteins are ubiquitous in nature but the ones referred to as flavin-containing monooxygenases, or simply by the acronym FMO, share a catalytic mechanism distinctly different from all other known oxidases or monooxygenases bearing flavin, heme or other redox active prosthetic groups. Like other mammalian monooxygenases, FMO’s require NADPH and oxygen as cosubstrates for the oxygenation of the third substrate but they differ in that the third substrate is not required for the generation of the enzyme bound oxygenating intermediate. Kinetic studies on mechanism (Poulsen and Ziegler, 1979, Beaty and Ballou, 1981a, 1981b) have shown that the xenobiotic substrate is not required for flavin reduction by NADPH nor for reoxidation of dihydroflavin by molecular oxygen. The latter reaction produces the 4a-hydroperoxyflavin which, in FMO, is stabilized by the protein microenvironment around the prosthetic group. The enzyme is apparently present within the cell in this form and any soft nucleophile that can gain access to the enzyme-bound oxygenating intermediate will be oxidized. Precise fit of substrate to enzyme is not necessary, and FMO catalyzes at the same maximum velocity the oxidation of compounds that possess few, if any structural features in common (Ziegler, 1988). These flavoproteins apparently discriminate between physiologically essential and xenobiotic soft nucleophiles by excluding the former rather than by selectively binding the latter. This property is largely responsible for the exceptionally broad specificity of these enzymes. Steric parameters controlling access of nucleophiles to the hydroperoxyflavin apparently differ in various forms of FMO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacq, A. M. (1975). In Sulfur Containing Radioprotective Agents (A. M. Bacq, ed.) p. 8, Pergammon Press, Oxford.

    Google Scholar 

  • Barker, E. A. and Smukler, E. A. (1972). Altered Microsome Function During Acute Thioacetamide Poisoning. Mol. Pharmacol. 8, 318–326.

    Google Scholar 

  • Barker, E. A. and Smukler, E. A. (1973). Non-hepatic Thioacetamide Injury: I Thymic Corticol Necrosis. Am. J. Pathol. 71, 409–418.

    Google Scholar 

  • Beaty, N. S. and Ballou, D. P. (1981a). The Reductive Half-Reaction of Liver Microsomal FAD-Containing Monooxygenase. J. Biol. Chem. 256, 4611–4618.

    Google Scholar 

  • Beaty, N. S. and Ballou, D. P. (1981b). The Oxidative Half-Reaction of Liver Microsomal FAD-Containing Monooxygenase. J. Biol. Chem. 256, 4619–4625.

    Google Scholar 

  • Cashman, J. R. and Hanzlik, R. P. (1981). Microsomal Oxidation of Thiobenzamide. A Photometric Assay for the Flavin-Containing Monooxygenase. Biophys. Res. Commun. 98, 147–153.

    Google Scholar 

  • Chieli, E. and Malvaldi, G. (1984). Role of the Microsomal FAD-Containing Monooxygenase in the Liver Toxicity of Thioacetamide S-Oxide. Toxicology 31, 41–52.

    Article  CAS  PubMed  Google Scholar 

  • Chieli, E. and Malvaldi, G. (1985). Role of the P-450 and FAD-Containing Monooxygenases in the Bioactivation of Thioacetamide, Thiobenzamides and Their Sulfoxides. Biochem. Pharmacol. 34, 395–396.

    Google Scholar 

  • Dannan, G. A. and Guengerich, F. P. (1982). Immunochemical Comparison and Quantitation of Microsomal Flavin-Containing Monooxygenase in Various Hog

    Google Scholar 

  • Mouse, Rat, Rabbit, Dog and Human Tissues. Mo/. Pharmacol. 22, 787–794.

    Google Scholar 

  • Fitzhugh, O. A. and Nelson, A. A. (1948). Liver Tumors in Rats Fed Thiourea or Thioacetamide. Science 108, 626–628.

    Article  CAS  PubMed  Google Scholar 

  • Frederick, C. B., Mays, J. B., Ziegler, D. M., Guengerich, F. P. and Kadlubar, F. F. (1982). Cytochrome P-450 and Flavin-Containing Monooxygenase-Catalyzed Formation of the Carcinogen N-Hydroxy-2-Aminofluorene and Its Covalent Binding to Nuclear DNA. Cancer Res. 42, 2671–2677.

    CAS  PubMed  Google Scholar 

  • Hanzlik, R. P., Cashman, J. P. and Traiger, G. J. (1980). Relative Hepatotoxicity of Thiobenzamides and Thiobenzamide-S-Oxides in the Rat. Toxicol. Appl. Pharmacol. 55, 260–272.

    Google Scholar 

  • Kreiter, P. A., Ziegler, D. M., Hill, K. A. and Burk, R. F. (1984). Increased Biliary GSSG Efflux from Rat Livers Perfused with Thiocarbamide Substrates for the Flavin-Containing Monooxygenase. Mol. Pharmacol. 26, 122–127.

    Google Scholar 

  • Liener, J. E. (1980). Toxic Constituents of Plant Foodstuff (J. E. Liener, ed.) 2nd edition, Academic Press Inc., New York.

    Google Scholar 

  • Lovenberg, W. (1973). Some Vaso-and Psychoactive Substances in Food: Amines, Stimulants, Depressants and Hallucinogens in Toxicants Occurring Naturally in Foods (F. M. Strong, L. Atkin, J. M. Coon, D. W. Fassett, B. J. Wilson and I. A. Wolff) pp. 170–188, National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Millard, W. J., Sagar, S. M., Landis, D. M. D., Martin, J. B. and Badger, T. M. (1982). Cysteamine: A Potent and Specific Depletor of Pituitary Prolactin. Science 217, 452–0454.

    Google Scholar 

  • Nagata, T., Williams, D. E. and Ziegler, D. M. (1990). Substrate Specificities of Rabbit Lung and Porcine Liver Flavin-Containing Monooxygenases: Differences Due to Substrate Size. Chem. Res. Toxicol. (submitted).

    Google Scholar 

  • Pelroy, R. A., Gandolfi, A. J. (1980). Use of a Mixed Function Amine Oxidase for Metabolic Activation in the Ames/Salmonella Assay System. Mutat. Res. 72, 329–334.

    Google Scholar 

  • Poulsen, L. L., Hyslop, R. M. and Ziegler, D. M. (1979). S-Oxygenation of N-Substituted Thioureas Catalyzed by the Liver Microsomal FAD-Containing Monooxygenase. Arch. Biochem. Biophys. 198, 78–98.

    Google Scholar 

  • Poulsen, L. L., Taylor, K., Williams, D. E., Masters, B. S. S. and Ziegler, D. M. (1986). Substrate Specificity of the Rabbit Lung Flavin-Containing Monooxygenase for Amines: Oxidation Products of Primary Alkylamines. Mol. Pharmacol. 30, 680685.

    Google Scholar 

  • Poulsen, L. L. and Ziegler, D. M. (1977). Microsomal Mixed-Function OxidaseDependent Renaturation of Reduced Ribonuclease. Arch. Biochem. Biophys. 183, 563–570.

    Google Scholar 

  • Poulsen, L. L. and Ziegler, D. M. (1979). The Liver Microsomal FAD-Containing Monooxygenases: Spectral Characterization and Kinetic Studies. J. Biol. Chem. 254, 6449–6455.

    Google Scholar 

  • Prough, R. A. and Moloney, S. J. (1985). “Hydrazines” in Bioactivation of Foreign

    Google Scholar 

  • Compounds (M. M. Anders, ed.) pp. 433–446, Academic Press Inc., New York.

    Google Scholar 

  • Prough, R. A., Freeman, P. C. and Hines, R. N. (1981). The Oxidation of Hydrazine Derivatives Catalyzed by the Purified Microsomal FAD-Containing Monooxygenase. J. Biol. Chem. 256, 4178–4184.

    Google Scholar 

  • Prough, R. A. and Ziegler, D. M. (1977). The Relative Participation of Liver Microsomal Amine Oxidase and Cytochrome P-450 in N-Demethylation Reactions. Arch. Biochem. Biophysic. 180, 363–373.

    Google Scholar 

  • Richter, C. P. (1952). The Physiology and Cytology of Pulmonary Edema and Pleural Effusion Produced in Rats by Alpha-naphthyl Thiourea. J. Thoracic Cardiovac. Surg. 23, 66–91.

    Google Scholar 

  • Sagar, S. M., Landry, D., Millard, W. J., Badger, T. M., Arnold, M. A. and Martin, J. B. (1982). Depletion of Somatostatin-Like Immunoreactivity in the Rat Central Nervous System by Cysteamine. J. Neuroscience 2, 225–231.

    CAS  Google Scholar 

  • Selye, H. and Szabo, S. (1973). Experimental Model for Production of Perforating Duodenal Ulcers by Cysteamine in the Rat. Nature 244, 458–459.

    Article  CAS  PubMed  Google Scholar 

  • Smith, R. L. and Williams, R. T. (1961). The Metabolism of Arylthioureas I. The Metabolism of 1,3-Diphenyl-2-thiourea (Thiocarbanilide) and Its Derivatives. J. Med. Pharma. Chem. 4, 97–107.

    Google Scholar 

  • Sterling, C. J. M. (1974). The Sulfinic Acids and Their Derivatives. Int. J. Sulfur Chem. 6, 277–316.

    Google Scholar 

  • Tynes, R. E. and Philpot, R. M. (1987). Tissue and Species-Dependent Expression of Multiple Forms of Mammalian Microsomal Flavin-Containing Monooxygenase. Mol. Pharmacol. 31, 569–574.

    Google Scholar 

  • Tynes, R. E., Sabourin, P. J. and Hodgson, E. (1985). Identification of Distinct Hepatic

    Google Scholar 

  • and Pulmonary Forms of Microsomal Flavin-Containing Monooxygenase in the

    Google Scholar 

  • Mouse and Rabbit. Biochem. Biophy. Res. Commun. 126, 1069–1075.

    Google Scholar 

  • Williams, D. E., Hale, S. E., Meurhoff, A. S. and Masters, B. S. S. (1984a). Rabbit Lung

    Google Scholar 

  • Flavin-Containing Monooxygenase: Purification, Characterization and Induction During Pregnancy. Mol. Pharmacol. 28, 381–390.

    Google Scholar 

  • Williams, D. E., Ziegler, D. M., Nordin, D. J., Hale, S. E. and Masters, B. S. S. (1984b). Rabbit Lung Flavin-Containing Monooxygenase is Immunochemically and Catalytically Distinct from the Liver Enzyme. Biochem. Biophys. Res. Commun. 125, 116–122.

    Google Scholar 

  • Ziegler, D. M. (1988). Flavin-Containing Monooxygenases: Catalytic Mechanism and Substrate Specificities. Drug Meta. Revs. 19, 1–32.

    Google Scholar 

  • Ziegler, D. M., Ansher, S. S., Nagata, T., Kadlubar, F. F. and Jakoby, W. B. (1988). N-Methylation: Potential Mechanism for Metabolic Activation of Carcinogenic Primary Arylamines. Proc. Natl. Acad. Sci. USA 85, 2514–2517.

    Google Scholar 

  • Ziegler, D. M., Poulsen, L. L. and Richerson, R. B. (1983). Oxidative Metabolism of Sulfur-Containing Radioprotective Agents in Radioprotective and Anticarcinogens (D. F. Nygaard and M. G. Simic, eds.) pp. 191–202, Academic Press Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Ziegler, D.M. (1991). Bioactivation of Xenobiotics by Flavin-Containing Monooxygenases. In: Witmer, C.M., Snyder, R.R., Jollow, D.J., Kalf, G.F., Kocsis, J.J., Sipes, I.G. (eds) Biological Reactive Intermediates IV. Advances in Experimental Medicine and Biology, vol 283. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5877-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5877-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5879-4

  • Online ISBN: 978-1-4684-5877-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics