Skip to main content

Role of the Well-Known Basic and Recently Discovered Acidic Glutathione S-Transferases in the Control of Genotoxic Metabolites

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 283))

Abstract

The discovery of glutathione S-transferases (GSTs; E.C. 2.5.1.18) active in the metabolism of carcinogens dates back to Booth et al. (1961). GSTs were initially believed to serve as intracellular transport proteins for endogenous compounds with limited solubility in water, thereby acting as an intracellular equivalent to albumin. In this assumed capacity of reversible binding and transport of various ligands, the corresponding protein was named ligandin (Litwack et al., 1971). Following the discovery of abundant GST occurrence in most forms of arerobic life including plants, and the GST-catalysed conjugation of a wide variety of electrophilic substrates with glutathione, GSTs are now generally considered to play a crucial role in the detoxification of foreign compounds (for reviews see Mannervik, 1985; Ketterer, 1988; Mannervik and Danielson, 1988; Sies and Ketterer, 1988). GSTs are also believed to provide cellular protection by covalent binding of reactive electrophiles to the enzyme itself resulting in immobilization and inactivation of the compound.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alin, P., Danielson, H., and Mannervik, B. (1985). 4-Hydroxy-alk-2-enals are substrates for glutathione transferase. FEBS Lett. 179, 267–270.

    Article  CAS  PubMed  Google Scholar 

  • Booth, J., Boyland, E. and Sims, P. (1961). An enzyme from rat liver catalysing conjugations with glutathione. Biochem. J. 79, 516–526.

    CAS  PubMed  Google Scholar 

  • Coles, B., Meyer, D.J., Ketterer, B., Stanton, C.A., and Garner, R.C. (1985). Studies on the detoxication of microsomally-activated afla-toxin B1 by glutathione and glutathione S-transferases in vitro. Carcinogenesis 6, 693–697.

    Article  CAS  Google Scholar 

  • Ding, G.J.F., Ding, V.D.H., Rodkey, J.A., Bennett, C.D., Lu, A.Y.H., and Pickett, C.B. (1986). Rat liver glutathione S-transferases. DNA sequence analysis of a Yb2 cDNA clone and regulation of the Ybl and Yb2 mRNAs by phenobarbital. J. Biol. Chem. 261, 7952–7957.

    CAS  PubMed  Google Scholar 

  • Ding, G.J.F., Lu, A.Y.H., and Pickett, C.B. (1985). Rat liver glutathione Stransferases. Nucleotide sequence analysis of a Ybl cDNA clone and prediction of the complete amino acid sequence of the Ybl subunit. J. Biol. Chem. 260, 13268–13271.

    CAS  PubMed  Google Scholar 

  • Faulder, C.G., Hirrell, P.A., Hume, R., and Strange, R.C. (1987). Studies of the development of basic, neutral and acidic isoenzymes of glutathione Stransferases in human liver, adrenal, kidney and spleen. Biochem. J. 241, 221–228.

    CAS  PubMed  Google Scholar 

  • Friedberg, T., Milbert, U., Bentley, P., Guenthner, T.M. and Oesch, F. (1983). Purification and characterization of a new cytosolic glutathione S-transferase (glutathione S-transferase X) from rat liver. Biochem. J. 215, 617–625.

    CAS  PubMed  Google Scholar 

  • Fryer, A.A., Hume, R., and Strange, R.C. (1986). The development of glutathione Stransferase and glutathione peroxidase activities in human lung. Biochim. Biophys. Acta. 883, 448.

    CAS  Google Scholar 

  • Gilham, B. (1971). The reaction of aralkyl sulphate esters with glutathione catalysed by rat liver preparations. Biochem. J. 121, 667–672.

    Google Scholar 

  • Glatt, H.R., Cooper, C.S., Grover, P.L., Sims, P., Bentley, P., Merdes, I., Waechter, F., Vogel, K., Guenthner, T.M. and Oesch, F. (1982). Inactivation of a diol-epoxide by dihydrodiol dehydrogenase, but not by two epoxide hydrolases. Science 215, 1507–1509.

    Article  CAS  PubMed  Google Scholar 

  • Glatt, H.R., Friedberg, T., Grover, P.L., Sims, P. and Oesch, F. (1983). Inactivation of a diol epoxide and a K-region epoxide with high efficiency by glutathione transferase X. Cancer Res. 43, 5713–5717.

    CAS  PubMed  Google Scholar 

  • Gregus, Z., Madhu, C., and Klaasen, C.D. (1989). Inducibility of glutathione Stranserases in hamsters. Cancer Lett. 44, 89–94.

    Article  CAS  PubMed  Google Scholar 

  • Habig, W.H., Pabst, M.J. and Jakoby, W.B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139.

    CAS  PubMed  Google Scholar 

  • Hatayama, I., Satoh, K., and Sato, K. (1986). Development and hormonal regulation of the major form of hepatic glutathione S-transferase in male mice. Biochem. Biophys. Res. Comun. 140, 581–588.

    Article  CAS  Google Scholar 

  • Igarashi, T., Irokawa, N., Ono, S., Ohmori, S., Ueno, K., and Kitagawa, H. (1987). Difference in the effects of phenobarbital and 3-methylchol-anthrene treatment on subunit composition of hepatic glutathione S-transferases in male and female rats. Xenobiotica 17, 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Igarashi, T., Satoh, T., Ueno, K., and Kitagawa, H. (1983). Species difference in glutathione level and glutathione related enzyme activities in rats, mice, guinea pigs and hamsters. J. Pharm. Dyn. 6, 941–949.

    Article  CAS  Google Scholar 

  • Igarashi, T., Satoh, T., Iwashita, K., Ono, S., Ueno, K., and Kitagawa, H. (1985). Sex difference in subunit composition of hepatic glutathione S-transferase in rats. J. Biochem. 98, 117–123.

    CAS  PubMed  Google Scholar 

  • Igarashi, T., Tomihari, N., Ohmori, S., Ueno, K., Kitagawa, H., and Satoh, T. (1986). Comparison of glutathione S-transferases in mouse, guinea pig, rabbit and hamster liver cytosol to those in rat liver. Biochem. International 13, 641–648.

    CAS  Google Scholar 

  • Jakoby, W.B., Habig, W.H., Keen, J.N., Ketley, J.N. and Pabst, M.J. (1976). Glutathione S-transferases: catalytical aspects. In: Glutathione: Metabolism and Function, Arias, I.M. and Jakoby, W.B. (eds): New York, Raven Press, pp. 189–201.

    Google Scholar 

  • Jakoby, W.B., Ketterer, B. and Mannervik, B. (1984). Glutathione transferases: nomenclature. Biochem. Pharmacol. 33, 2539–2540.

    Article  CAS  PubMed  Google Scholar 

  • Jensson, H., Guthenberg, C., alin, P., and Mannervik, B. (1986). Rat glutathione transferase 8–8, an enzyme efficiently detoxifying 4-hydroxyalk-2-enals. FEBS Lett. 203, 207–209.

    Article  CAS  PubMed  Google Scholar 

  • Jernström, B., Martinez, M., Meyer, D.J., and Ketterer, B. (1985). Glutathione conjugation of the carcinogenic and mutagenic electrophile (+)-713,8a-dihydroxy-9a,10a-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene catalyzed by purified rat liver glutathione transerases. Carcinogenesis 6, 85–89.

    Article  PubMed  Google Scholar 

  • Ketterer, B. (1988). Protective role of glutathione and glutathione transferases in mutagenesis and carcinogenesis. Mutat. Res. 202, 343–361.

    CAS  Google Scholar 

  • Litwack, G., Ketterer, B., and Arias, I.M. (1971). Ligandin: a hepatic protein which binds steroids, bilirubin, carcinogens and a number of organic anions. Nature (London) 234, 466–467.

    Article  CAS  Google Scholar 

  • Mannervik, B. (1985). The isoenzymes of glutathione transferase. Adv. Enzymol. Rel. Areas Mol. Biol. 57, 357–417.

    CAS  Google Scholar 

  • Mannervik, B., and danielson, U.H. (1988). Glutathione transferases-structure and catalytic activity. CRC Crit. Rev. Biochem. 23, 283–337.

    Article  CAS  PubMed  Google Scholar 

  • Milbert, U. (1986). Ph.D.-Thesis, University of Mainz.

    Google Scholar 

  • Pickett, C.B., Telakowski-Hopkins, C.A., Ding, G.J., argenbright, L., and Lu, A.Y.H. (1984). Rat liver glutathione S-transferases. Complete nucleotide sequence of a glutathione S-transferase mRNA and the regulation of the Ya, Yb, and Ye mRNA by 3-methylcholanthrene and phenobarbital. J. Biol. Chem. 259, 5182–5188.

    CAS  PubMed  Google Scholar 

  • Robertson, I.G.C., Guthenberg, C., Mannervik, B. and Jernström, B. (1986). Differences in stereoselectivity and catalytic efficiency of three human glutathione transferases in the conjugation of glutathione with 70,8a-dihydroxy-9a,10a-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene. Cancer Res. 46, 2220–2224.

    CAS  PubMed  Google Scholar 

  • Robertson, I.G.C., Jensson, H., Mannervik, B. and Jernström, B. (1986). Glutathione transferases in rat lung: the presence of transferase 7–7, highly efficient in the conjugation of glutathione with the carcinogenic (+)-713,8a-dihydroxy-9a,10a-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene. Carcinogenesis 7, 295–299.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, I.G.C. Jernström, B. (1986). The enzymatic conjugation of glutathione with bay-region diol-epoxides of benzo(a)pyrene, benz(a)anthracene and chrysene. Carcinogenesis 7, 1633–1636.

    Article  CAS  PubMed  Google Scholar 

  • Sato, K. (1989). Glutathione transferases as markers of preneoplasia and neoplasia. Adv. Cancer Res. 52, 205–255.

    Article  CAS  Google Scholar 

  • Sies, H., and Ketterer, B. (1988) (Eds.). Glutathione conjugation: mechanisms and biological significance. Academic Press, New York.

    Google Scholar 

  • Suguoka, Y., Kano, T., Okuda, A., Sakai, M., Kitagawa, T., and Muramatsu, M. (1985). Cloning and the nucleotide sequence of rat glutathione S-transferase P cDNA. Nucleic Acids Res. 13, 6049–6057.

    Article  CAS  PubMed  Google Scholar 

  • Telakowski-Hopkins, C.A., King, R.G., and Pickett, C.B. (1988). Glutathione S-transferase Ya subunit gene: identification of regulatory elements required for basal level and inducible expression. Proc. Natl. Acad. Sci. USA 85, 1000–1004.

    Article  CAS  PubMed  Google Scholar 

  • Telakowski-Hopkins, C.A., Rothkopf, G.S., and Pickett, C.B. (1986). Structural analysis of a rat liver glutathione S-transferase Ya gene. Proc. Natl. Acad. Sci. USA 83, 9393–9397.

    Article  CAS  Google Scholar 

  • Thakker, D.R., Yagi, H., Levin, W., Wood, A.W., Conney, A.H., and Jerina, D.M. (1985). Polycyclic aromatic hydrocarbons: metabolic activation to ultimate carcinogens. In: Bioactivation of Foreign Compounds ( M.W. Anders, Ed.) pp. 177–242. New York, Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Oesch, F., Gath, I., Igarashi, T., Glatt, H., Oesch-Bartlomowicz, B., Thomas, H. (1991). Role of the Well-Known Basic and Recently Discovered Acidic Glutathione S-Transferases in the Control of Genotoxic Metabolites. In: Witmer, C.M., Snyder, R.R., Jollow, D.J., Kalf, G.F., Kocsis, J.J., Sipes, I.G. (eds) Biological Reactive Intermediates IV. Advances in Experimental Medicine and Biology, vol 283. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5877-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5877-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5879-4

  • Online ISBN: 978-1-4684-5877-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics