Skip to main content

Proto-Oncogene Activation in Rodent and Human Tumors

  • Chapter
Biological Reactive Intermediates IV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 283))

Abstract

The process of cell transformation is a multistep phenomenon. Increasing evidence suggests that a small set of cellular genes appear to be targets for genetic alterations that contribute to the neoplastic transformation of cells. The development of neoplastia may, in many cases, require changes in at least two classes of cellular genes: proto-oncogenes (Bishop, 1987; Anderson and Reynolds, 1989) and tumor suppressor genes (Weinberg, 1989; Hansen and Cavenee, 1988; Barrett, 1987). For example, both the activation of ras oncogenes and the inactivation of several suppressor genes have been observed in the development of human colon tumors (Stanbridge, 1990) and human lung tumors (Tabahashi et al., 1989; Weston et al., 1989; Reynolds et al., 1989; Minna et al., 1989; Rodenhuis et al., 1988). These two examples illustrate that a cell accumulates several types of genetic alterations in its evolution to a malignant phenotype. The focus of this chapter is to discuss the activation of proto-oncogens in human and rodent tumors and the pattern of mutations in ras oncogenes detected in human and rodent tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anathaswamy, H.N., Price, J.E., Goldberg, L.H., and Straka, C. (1987). Simultaneous transfer of tumorigenic and metastatic phenotypes by transfection with genomic DNA from a human cutaneous squamous cell carcinoma. Proc. Am. Assoc. Cancer Res. 28, 69.

    Google Scholar 

  • Anderson, M.W., and Reynolds, S.H. (1989). Activation of oncogenes by chemical carcinogens. In The Pathobiology of Neoplasia ( A. Sirica, Ed.), pp. 291–304. Plenum Press, New York, NY.

    Chapter  Google Scholar 

  • Bailleul, B., Brown, K., Ramsden, M., Akhurst, R.J., Fee, F., and Balmain, A. (1989). Chemical induction of oncogene mutations and growth factor activity in mouse skin carcinogenesis. Environmental Health Perspectives 81, 23–27.

    Article  CAS  PubMed  Google Scholar 

  • Balmain, A., and Brown, K. (1988). Oncogene activation in chemical carcinogenesis. Advances in Cancer Res. 51, 147–182.

    Article  CAS  Google Scholar 

  • Barrett, J.C., Oshimura, M., and Koi, M. (1987). Role of oncogenes and tumor suppressant genes in a multistep model of carcinogenesis. In Symposium on Fundamental Cancer Research (F. Becker, Ed.), Vol. 38, pp. 45–56.

    Google Scholar 

  • Barbacid, M. (1987). Ras genes. Ann. Rev. Biochem. 56, 780–813.

    Article  Google Scholar 

  • Belinsky, S., Devereux, T., Maronpot, R., Stoner, G., and Anderson, M. (1989). Relationship between the formation of promutagenic adducts and the activation of the K-ras protooncogene in lung tumors from A/J mice treated with nitrosamines. Cancer Res. 49, 5305–5311.

    CAS  PubMed  Google Scholar 

  • Bishop, J.M. (1989). Oncogenes and clinical cancer. In Oncogenes and Clinical Cancer, pp. 327–358.

    Google Scholar 

  • Bishop, J.M. (1987). The molecular genetics of cancer. Science (Wash. DC) 235, 303–311.

    Article  Google Scholar 

  • Bishop, J.M. (1985). Viral oncogenes. Cell 42, 23–38.

    Article  CAS  PubMed  Google Scholar 

  • Bongarzone, I., Pierotti, M.A., Monzini, N., Mondellini, P., Manenti, G., Donghi, R., Pilotti, S., Grieco, M., Santoro, M., Fusco, A., Vecchio, G., and Della Porta, G. (1989). High frequency of tyrosine kinase oncogenes in human papillary thyroid carcinoma. Oncogene 4, 1457–1462.

    CAS  PubMed  Google Scholar 

  • Bos, J.L., Fearon, E.R., Hamilton, S.R., Verlaan–de Vries, M., van Boom, J.H., van der Eb, A.J., and Vogelstein, B. (1987). Prevalence of ras gene mutations in human colorectal cancers. Nature 327, 293–299.

    Article  CAS  PubMed  Google Scholar 

  • Bos, J.L., Verlaan–de Vries, M., van der EB, A.J., Janssen, J.W.G., Delwel, R., Lowen berg, B., and Colly, L.P. (1987). Mutations in N–ras predominate in acute myeloid leukemia. Blood 69, 1237–1241.

    CAS  PubMed  Google Scholar 

  • Brown, K., Buchmann, A., and Balmain, A. (1989). Carcinogen–induced mutations in the mouse c–Ha–ras gene provide evidence of multiple pathways for tumor progression. Proc. Natl. Acad. Sci. USA 87, 538–542.

    Article  Google Scholar 

  • Burmer, G.C., and Loeb, L.A. (1989). Mutations in the KRAS2 oncogene during progressive stages of human colon carcinoma. Proc. Natl Acad. Sci. USA 86, 2403–2407.

    Article  CAS  PubMed  Google Scholar 

  • Farr, C.J., Marshall, C.J., Easty, D.J., Wright, N.A., Powell, S.C., and Paraskeva, C. (1988). A study of ras gene mutations in clonic adenomas from familial polyposis coli patients. Oncogene 3, 673–678.

    CAS  PubMed  Google Scholar 

  • Fasano, O., Birnbaum, D., Edlund, L., Fogh, J., and Wigler, M. (1984). New human genes detected by tumorigenicity assay. Mal. Cell. Biol. 4, 1695–1705.

    CAS  Google Scholar 

  • Fujita, J., Srivastava, S.K., Kraus, M.H., Rhim, J.S., Tronick, S.R., and Aaronson, S.A. (1985). Frequency of molecular alterations affecting ras protooncogenes in human urinary tract tumors. Proc. Natl. Acad. Sci. USA 82, 3849–3853.

    Article  CAS  PubMed  Google Scholar 

  • Grunewald, K., Lyons, J., Frohlich, A., Feichtinger, H., Weger, R.A., Schwab, G., Janssen, J.W.G., and Bartram, C.R. (1989). High frequency of Ki-ras codon 12 mutations in pancreatic adenocarcinomas. Int. J. Cancer 43, 1037–1041.

    Article  CAS  PubMed  Google Scholar 

  • Guerrero, I., and Pellicer, A. (1987). Mutational activation of oncogenes in animal model systems of carcinogenesis. Mutation Research 185, 293–308.

    CAS  PubMed  Google Scholar 

  • Hansen, M.F., and Cavenee, W.K. (1988). Tumor suppressors: recessive mutations that lead to cancer. Cell 53, 172–173.

    Article  CAS  Google Scholar 

  • Hirari, H., Kobayashi, Y., Mano, H., Hagiwara, K., Maru, Y., Omine, M., Mizoguxhi, H., Nishida, J., and Takaku, F. (1987). A point mutation at codon 13 of the N-ras oncogene in myelodysplastic syndrome.Nature (Lond.). 327, 430–432.

    Article  Google Scholar 

  • Konopka, J.B., Watanabe, S.M., and Witte, O.N. (1984). An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 37, 1035–1042.

    Article  CAS  PubMed  Google Scholar 

  • Leder, P., Battery, J., Lenior, G., Moulding, C., Murphy, W., Potter, H., Stewart, T., and Taub, R. (1984). Translocations among antibody genes in human cancer. Science 22, 765–771.

    Google Scholar 

  • Liu, E., Hjelle, B., and Bishop, M. (1988). Transforming genes in chronic myelogenous leukemia. Proc. Natl. Acad. Sci. USA 85, 1952–1956.

    Article  CAS  PubMed  Google Scholar 

  • Liu, E., Hjelle, B., Morgan, R., Hecht, F., and Bishop, M. (1987). Mutations of the kirsten-ras proto-oncogene in human preleukaemia. Nature 330, 186–188.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, F. (1989). Ras oncogenes. In Oncogenes and the Molecular Origin of Cancer. (R.A. Weinberg, Ed.), pp. 125–145, Cold Spring Harbor, NY.

    Google Scholar 

  • Milburn, M.V., Tong, L., DeVos, A.M., Brunger, A., Yamaizumi, Z., Nishimura, S., and Kim, S. (1990). Molecular switch for signal transduction: Structural differences between active and inactive forms of protooncogenic ras proteins. Science 247, 939–945.

    Article  CAS  PubMed  Google Scholar 

  • Minna, J., Schutte, J., Viallet, J., Thomas, F., Kaye, F., Takahashi, T., Nau, M., Whang-Peng, J., Birrer, M., and Gazdar, A.F. (1989). Transcription factors and recessive oncogenes in the pathogenesis of human lung cancer. Int. J. Cancer 4, 32–34.

    Article  CAS  Google Scholar 

  • Miller, J., and Miller, E. (1983). The metabolic activation and nucleic acid adducts of naturally-occurring carcinogens: recent results with ethyl carbamate and the spice flavors safrole and estragole. Br. J. Cancer 48, 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Newcomb, E.W., Diamond, L.E., Sloan, S.R., Corominas, M., Gurrerro, I., and Pellicer, A. (1989). Radiation and chemical activation of ras oncogenes in different mouse strains. Environmental Health Perspectives 81, 33–37.

    Article  CAS  PubMed  Google Scholar 

  • Ochiya, T., Fujiyama, A., Fukushige, S., Hatada, I., and Matsubara, K. (1986). Molecular cloning of an oncogene from a human hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA 83, 4993–4997.

    Article  CAS  PubMed  Google Scholar 

  • Pai, E., Kabsch, W., Krengel, U., Holmes, K., John, J., and Wittinghofer, A. (1989). Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341, 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Perucho, M., Forrester, K., Almoguera, C., Kahn, S., Lama, C., Shibata, D., Arnheim, N., and Grizzle, W.E. (1989). Expression and mutational activation of the c-Ki-ras gene in human carcinomas. Cancer Cells 7, 137–141.

    Google Scholar 

  • Philips, D.H., Hewer, A., Martin, C.N., Garner, R.C., and King, M.M. (1988). Correlation of DNA adduct levels in human lung with cigarette smoking. Nature 336, 790–792.

    Article  Google Scholar 

  • Reynolds, S.H., Hunnicutt, C.K., Brown, K.C., Beattie, T., Pero, R., and Anderson, M.W. (1989). Ras oncogenes in human lung tumors associated with exposure to cigarette smoke. J. Cell. Biochemistry.

    Google Scholar 

  • Reynolds, S.H., Stowers, S.J., Maronpot, R.R., Aaronson, S.A., and Anderson, M.W. (1987). Activated oncogenes in B6C3F1 mouse liver tumors: implications for risk assessment. Science 237, 1309–1317.

    Article  CAS  PubMed  Google Scholar 

  • Rodenhuis, S., Slebos, R.J.C., Boot, A.J.M., Evers, S.G., Mooi, W.J., Wagenaar, S.S., Bodegom, P.C., and Bos, J.L. (1988). Incidence and possible clinical significance of K-ras oncogene activation in adenocarcinoma of the human lung. Cancer Research 48, 5738–5741.

    CAS  PubMed  Google Scholar 

  • Sakamoto, H., Mori, M., Tara, M., Yoshida, T., Matsukawa, S., Shimizu, K., Sekiguchi, M., Terada, M., and Sugimura, T. (1986). Transforming gene from human stomach cancers and a noncancerous portion of stomach mucosa. Proc. Natl. Acad. Sci. USA 83, 3997–4001.

    Article  CAS  PubMed  Google Scholar 

  • Schechter, A.L., Stern, D.F., Vaidyanathan, L., Decker, S.J., Drebin, J.A., Greene, M.I., and Weinberg, R.A. (1984). The neu oncogene: An erb-B-related gene encoding a 185,000-M, tumor antigen. Nature (Lond.). 312, 513–516.

    Article  CAS  Google Scholar 

  • Shibata. D., Almoguera, C., Forrester, K., Dunitz, J., Martin, S.E., Cosgrove, M.M., Perucho, M., and Arnheim, N. (1990). Detection of c-K-ras mutations in fine needle aspirates from human pancreatic adenocarcinomas. Cancer Res. 50, 1279–1283.

    CAS  PubMed  Google Scholar 

  • Shih, C.S., Shilo, B., Goldfarb, M.P., Dannenberg, A., and Weinberg, R.A. (1979). Passage of phenotypes of chemically transformed cells via transfection DNA and chromatin. Proc. Natl. Acad. Sci. USA 76, 5714–5718.

    Article  CAS  PubMed  Google Scholar 

  • Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A., and McGuire, W. (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Sloan, S.R., Newcomb, E.W., and Pellicer, A. (1990). Neutron radiation can activate K-ras via a point mutation in codon 146 and induces a different spectrum of ras mutations than does gamma radiation. Mol. and Cell. Biol. 10, 405–408.

    CAS  Google Scholar 

  • Smit, V.T.H.B.M., Boot, A.J.M., Smits, A.M.M., Fleuren, G, Cornelisse, C.J., and Bos, J.L. (1988). KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Research 16, 7773–7782.

    Article  CAS  PubMed  Google Scholar 

  • Stanbridge, E.J. (1990). Identifying tumor suppressor genes in human colorectal cancer. Science 247, 12–13.

    Article  CAS  PubMed  Google Scholar 

  • Sukumar, A. (1988). Involvement of oncogenes in carcinogenesis. In Cellular and Molecular Biology of Mammary Cancer ( Medina, D., Kidwell, W., Heppner, G., and Anderson, E., Eds.), pp. 381–398. Plenum Press, New York, London.

    Google Scholar 

  • Tada, M., Ornata, M., and Ohto, M. (1990). Analysis of ras gene mutations in human hepatic malignant tumors by polymerase chain reaction and direct sequencing. Cancer Res. 50, 1121–1124.

    CAS  PubMed  Google Scholar 

  • Takahashi, T., Nau, M.M., Chiba, I., Birrer, M.J., Rosenberg, R.K., Vincour, M., Levitt, M., Pass, H., Gazdar, A.F., Minna, J.D. (1989). p53: A frequent target for genetic abnormalities in lung cancer. Science 240, 491–494.

    Article  Google Scholar 

  • Tsujimoto, Y., Ikegaki, Y.N., and Croce, C.M. (1988). Characterization of the protein product of bel-2, the gene involved in human follicular lymphoma. Oncogene 2, 3–9.

    Google Scholar 

  • Tsujimoto, Y., and Croce, C.M. (9186). Analysis of the structure, transcripts, and protein products of the bel- 2, the gene involved in human follicular lymphoma. Proc. Natl. Acad. Sci.. 83, 5214–5218.

    Article  CAS  PubMed  Google Scholar 

  • Varmus, H. (1989). An historical overview of oncogenes. In Oncogenes and the Molecular Origin of Cancer ( R.A. Weinberg, Ed.), pp. 3–44. Cold Spring Harbor Lab. Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Van ‘T Veer, L.J., Burgering, B.M.T., Versteeg, R., Boot, A.J.M., Ruiter, D.J., Osanto, S., Schrier, P.I., and Bos, J.L. (1989). N-ras mutations in human cutaneous melanoma from sun-exposed body sites. Mol. Cell. Biol. 9, 3114–3116.

    Google Scholar 

  • Visvanathan, K., Pocock, R.D., Summerhayes, I.C. (1988). Preferential and novel activation of H-ras in human bladder carcinomas. Oncogene Res. 3, 77–86.

    CAS  PubMed  Google Scholar 

  • Vogelstein, B., Fearon, E.R., Hamilton, S.R., Kern, S.E., Presinger, A.C., Leppert, M., Nakamura, Y., White, R., Smits, A.M.M., and Bos, J.L. (1988). Genetic alterations during colorectal-tumor development. The New England J of Med. 319, 525–532.

    Article  CAS  Google Scholar 

  • Wang, Y., You, M., Reynolds, S., Stoner, G., and Anderson, M. (1990). Mutational activation of the cellular Harvey ras oncogene in rat esophageal papillomas induced by ethylbenzylnitrosamine. Cancer Res. 50, 1591–1595.

    CAS  PubMed  Google Scholar 

  • Weinberg, R.A. (1985). Oncogenes, antioncogenes, and the molecular basis of multistep carcinogenesis. Cancer Res. 49, 3713–3721.

    Google Scholar 

  • Westin, E.H. (1989). Oncogenes. In The Pathobiology of Neoplasia ( A. Sirica, Ed.), pp. 275–290. Plenum Press, New York, NY.

    Chapter  Google Scholar 

  • Weston, A., Willey J.C., Modali, R., Sugimura, H., McDowell, E.M., Resau, J., Light, B., Haugen, A., Mann, D.L., Trump, B.F., and Harris, C.C. (1989). Differential DNA sequence deletions from chromosomes 3, 11, 13, and 17 in squamous-cell carcinoma, large-cell carcinoma, and adenocarcinoma of the human lung. Proc. Natl. Acad. Sci. USA. 86, 5099–5103.

    Article  CAS  PubMed  Google Scholar 

  • Wiseman, R., Stowers, S., Miller, E., Anderson, M., and Miller, J. (1986). Activating mutations of c-Ha-ras protooncogenes in chemically induced hepatomas of the male B6C3F1 mouse. Proc. Natl. Acad. Sci. USA. 83, 5285–5289.

    Article  Google Scholar 

  • Wynder, E.L. (1972). Etiology of lung cancer. Reflections on two decades of research. Cancer 30, 1332–1337.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, T., Miyagawa, K., Odagiri, H., Sakamoto, H., Little, P.F.R., Terada, M., and Sugimura, T. (1987). Genomic sequence of hst, a transforming gene encoding a protein homologous to fibroblast growth factors and the int-2-encoded protein. Proc. Natl. Acad. Sci. USA. 84, 7305–7310.

    Article  CAS  PubMed  Google Scholar 

  • You, M., Candrian, U., Maronpot, R., Stoner, G., and Anderson, M. (1989). Activation of the K-ras protooncogene in spontaneously occurring and chemically-induced lung tumors of the strain A mouse. Proc. Natl. Acad. Sci. USA. 86, 3070–3074.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Anderson, M.W., You, M., Reynolds, S.H. (1991). Proto-Oncogene Activation in Rodent and Human Tumors. In: Witmer, C.M., Snyder, R.R., Jollow, D.J., Kalf, G.F., Kocsis, J.J., Sipes, I.G. (eds) Biological Reactive Intermediates IV. Advances in Experimental Medicine and Biology, vol 283. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5877-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5877-0_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5879-4

  • Online ISBN: 978-1-4684-5877-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics