Macrophage Influence on Smooth Muscle Phenotype in Atherogenesis

  • Gordon R. Campbell
  • Julie H. Campbell
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 273)


There is now a large body of evidence indicating that smooth muscle cells in the intima of human arteries involved in atherogenesis are phenotypically different from those of the underlying media. The differences include cell shape (Orekhov et al., 1984, 1986), actin isoform (Gabbiani et al., 1984), myosin isoform (Benzonana et al., 1988), tropomyosin content (Kocher and Gabbiani, 1986), intermediate filaments (Osborn et al., 1987), caldesmon (Glukhova et al., 1988), meta-vinculin (Glukhova et al., 1988), cyclic nucleotides (Tertov et al., 1987), PDGF (Wilcox et al., 1988), fibronectin (Glukhova et al., 1989), and expression of major histocompatibility complexes (Hansson et al., 1986).


Smooth Muscle Cell Heparan Sulphate Heparan Sulphate Proteoglycan Intimal Thickening Heparan Sulphate Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ang, A.H., Tachas, G., Campbell, J.H., Bateman, J.F. and Campbell, G.R., 1990, Collagen synthesis by cultured rabbit aortic smooth muscle cells: Alteration with phenotype, Biochem. J. 265:(in press).Google Scholar
  2. Aqel, N.M., Ball, R.Y., Waldman, H. and Mitchinson, M.J., 1985, Identification of macrophages and smooth muscle cells in human atherosclerosis using monoclonal antibodies. J. Pathol. 146:197–204.PubMedCrossRefGoogle Scholar
  3. Benzonana, G., Skalli, O. and Gabbiani, G., 1988, Correlation between the distribution of smooth muscle or non-muscle myosins and α-smooth muscle actin in normal and pathological soft tissues. Cell Motil. Cvtoskeleton. 11:260–274.CrossRefGoogle Scholar
  4. Bienkowski, J.H. and Conrad, H.E., 1984, Kinetics of proteoheparan sulphate synthesis, secretion, endocytosis, and catabolism by a hepatocyte cell line. J. Biol. Chem. 259:12989–12996. Bissell, M.J. and Barcellos-Hoff, M.H., 1987, The influence of extracellular matrix on gene expression: Is structure the message? J. Cell Sci. 8(Suppl):327–343.PubMedGoogle Scholar
  5. Bissell, M.J. and Barcellos-Hoff, M.H., 1987, The influence of extracellular matrix on gene expression: Is structure the message? J. Cell Sci. 8(Suppl):327–343.Google Scholar
  6. Bissell, M.J., Hall, H.G. and Parry, G., 1982, How does the extracellular matrix direct gene expression? J. Theoret. Biol. 99:31–68.CrossRefGoogle Scholar
  7. Burke, J.M. and Ross, R., 1979, Synthesis of connective tissue macromolecules by smooth muscle. Int. Rev. Connect. Tissue 8:119–157.Google Scholar
  8. Campbell, G.R. and Campbell, J.H., 1985, Smooth muscle phenotypic changes in arterial wall homeostasis: Implications for the pathogenesis of atherosclerosis. Exp. Mol. Pathol. 42:139–162.PubMedCrossRefGoogle Scholar
  9. Campbell, G.R., and Campbell, J.H., 1987, Phenotypic modulation of smooth muscle cells in primary culture, in: “Vascular smooth muscle in culture,” J.H. Campbell, G.R. Campbell, eds. Boca Raton. FL: CRC Press. pp. 39–56.Google Scholar
  10. Campbell, J.H. and Campbell, G.R., 1984, Cellular interactions in the artery wall. in: “The Peripheral Circulation,” S. Hunyor, J. Ludbrook, J. Shaw, M. McGrath, (eds)., Elsevier, New York, pp. 33–39.Google Scholar
  11. Campbell, J.H. and Campbell, G.R., 1989, Potential role of heparanase in atherosclerosis. News In Physiol. Sci. 4:9–12.Google Scholar
  12. Campbell, J.H., Kocher, O., Skalli, O., Gabbiani, G. and Campbell, G.R., 1989, Cytodifferentiation and expression of α smooth muscle actin mRNA and protein during primary culture of aortic smooth muscle cells. Correlation with cell density and proliferative state. Arteriosclerosis. 9:633–643.PubMedCrossRefGoogle Scholar
  13. Campbell, J.H., Popadynec, L., Nestel, P.J. and Campbell, G.R., 1983, Lipid accumulation in arterial smooth muscle cells. Depdenence on phenotype. Atherosclerosis 47:279–295.PubMedCrossRefGoogle Scholar
  14. Campbell, J.H., Reardon, M.F., Campbell, G.R. and Nestel, P.J., 1985, Metabolism of atherogenic lipoproteins by smooth muscle cells of different phenotype in culture. Arteriosclerosis 5:318–328.PubMedCrossRefGoogle Scholar
  15. Chamley-Campbell, J.H. and Campbell, G.R., 1981, What controls smooth muscle phenotype? Atherosclerosis 40:347–357.PubMedCrossRefGoogle Scholar
  16. Chamley-Campbell, J.H., Campbell, G.R. and Ross, R., 1981, Phenotype-independent response of cultured aortic smooth muscle to serum mitogens. J. Cell Biol. 89:379–383.PubMedCrossRefGoogle Scholar
  17. Clowes, A.W., Reidy, M.A. and Clowes, M.M., 1983, Kinetics of cellular proliferation after arterial injury I. Smooth muscle cell growth in the absence of endothelium. Lab. Invest. 49:327–333.PubMedGoogle Scholar
  18. Cocks, T.M., Manderson, J.A., Mosse, P.R.L., Campbell, G.R. and Angus, J.A., 1987, Development of a large fibromuscular intimai thickening does not impair endothelium-dependent relaxation in the rabbit carotid artery. Blood Vessels 24:192–200.PubMedGoogle Scholar
  19. DeDuve, C, Pressman, B.C., Gianetto, R., Wattiaux, R. and Applemans, F., 1955, Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem. J. 60:604–617.Google Scholar
  20. Fedarko, N.S. and Conrad, H.E., 1986, A unique heparan sulfate in the nuclei of hepatocytes: Structural changes with the growth state of the cells. J. Cell Biol. 102:587–599.PubMedCrossRefGoogle Scholar
  21. Fishman, J.A., Ryan, G.B., Karnovsky, M.J., 1975, Endothelial regeneration in the rat carotid artery and the significance of endothelial denudation in the pathogenesis of myointimal thickening. Lab. Invest. 32:339–351.PubMedGoogle Scholar
  22. Fowler, S., Shio, H. and Haley, N.J., 1979, Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. IV. Investigation of macrophage-like properties of aortic cell populations. Lab. Invest. 41:372–378.PubMedGoogle Scholar
  23. Fritze, L.M., Reilly, C.F. and Rosenberg, R.D., 1985 An antiproliferative heparan sulphate species produced by post-confluence smooth muscle cells. J. Cell Biol. 100:1041–1049.PubMedCrossRefGoogle Scholar
  24. Gabbiani, G., Kocher, O., Bloom, W.S., Vanderkerkhove, J. and Weber, K., 1984, Actin expression in smooth muscle cells of rat aortic intimai thickening, human atheromatous plaque and cultured rat aortic media. J. Clin. Invest. 73:148–152.PubMedCrossRefGoogle Scholar
  25. Ginsburg, R., Bristow, M.R, Davis, K., Dibiase, A., Billingham, M.E., 1984, Quantiative pharmacologic responses of normal and atherosclerotic isolated human epicardial coronary arteries. Circulation 69:430–440.PubMedCrossRefGoogle Scholar
  26. Glukhova, M.A., Frid, M.G., Shekhonin, B.V., Vasilevskaya, T.D., Grünwald, J., Saginati, M. and Koteliansky, V.E., 1989, Expression of extra domain A fibronectin sequence in vascular smooth muscle cells is phenotype dependent. J Cell Biol. 109:357–366.PubMedCrossRefGoogle Scholar
  27. Glukhova, M.A., Kabakov, A.E., Frid, M.G., Ornatsky, O.I., Belkin, A.M., Mukhin, D.N., Orekhov, A.N., Koteliansky, V.E. and Smirnov, V.N., 1988, Modulation of human aorta smooth muscle cell phenotype: A study of muscle-specific variants of vinculin, caldesmon, and actin expression. Proc. Natl. Acad. Sci. USA, 85:9542–9546.PubMedCrossRefGoogle Scholar
  28. Hadley, M.A., Byers, S.W., Suarex-Quian, CA., Kleinman, H.K. and Dym, M., 1985, Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation and germ cell development. J. Cell Biol. 101:1511–1522.PubMedCrossRefGoogle Scholar
  29. Hansson, G.K., Jonasson, L., Holm, K. and Claesson-Welsh, L., 1986, Class II MHC antigen expression in the atherosclerotic plaque: Smooth muscle cells express HLA-DR, HLA-DQ and the invariant gamma chain. Clin. Exp. Immunol. 64:261–268.PubMedGoogle Scholar
  30. Hay, E.D. ed., 1981, Cell Biology of the extracellular matrix. New York, London: Plenum Press.Google Scholar
  31. Heistad, D.D., Mark, A.L., Marcus, M.L., Piegors, D.J. and Armstrong, M.L., 1987, Dietary treatment of atherosclerosis abolishes hyperresponsiveness to serotonin: Implications for vasospasm. Circulation Res. 61:346–351.PubMedGoogle Scholar
  32. Henry, P.D. and Yokoyama, M., 1980, Supersensitivity of atherosclerotic rabbit aorta to ergonovine. Mediation by a serotonergic mechanism. J. Clin. Invest. 66:306–313.PubMedCrossRefGoogle Scholar
  33. Herbert, J.M., Nuti, D., Paul, R. and Maffrand, J.P., 1988, In vitro and ex vivo regulation of vascular smooth muscle cell growth and phenotypic modulation by sulphated polysaccharides. Artery 16:1–14.PubMedGoogle Scholar
  34. Hook, M., Kjellen, L., Johnson, S. and Robinson, J., 1984, Cell surface glycosaminoglycans. Annu. Rev. Biochem. 53:847–869.PubMedCrossRefGoogle Scholar
  35. Jonasson, L., Holm, J., Skalli, O., Bondjers, G. and Hansson, G.K., 1986, The human atherosclerotic plaque: Regional accumulations of T cells, macrophages and smooth muscle cells. Arteriosclerosis 6:131–138.PubMedCrossRefGoogle Scholar
  36. Joris, I., Zand, T., Nunnari, J.J., Krolikowski, F.J. and Majno, G., 1983, Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aortic of hypercholesterolemic rats. Am. J. Pathol. 113:341–358.PubMedGoogle Scholar
  37. Kocher, O. and Gabbiani, G., 1986, Cytoskeletal features of normal and atheromatous human arterial smooth muscle cells. Human Pathol. 17:875–880.CrossRefGoogle Scholar
  38. Lopez, J.A.G. Armstrong, M.L., Piegors, D.J. and Heistad, D.D., 1989, The effect of early and advanced atherosclerosis on vascular responses to serotonin, thromboxane A2 and ADP. Circulation 79:698–705.PubMedCrossRefGoogle Scholar
  39. Lucas, C, Saffitz, J.E. and Henry, P.D., 1981, Monoaminergic receptor shift in atherosclerotic rabbit aorta. Circulation 64:Suppl.IV:286.Google Scholar
  40. MacAlpin, R.N., 1980, Contribution of dynamic vascular wall thickening to luminal narrowing during coronary arterial constriction. Circulation 60:296–301.Google Scholar
  41. Manderson, J.A., Cocks, T.M. and Campbell, G.R., 1989, Balloon catheter injury to rabbit carotid artery. II. Selective increase in reactivity to some vasoconstrictor drugs. Arteriosclerosis 9:299–307.PubMedCrossRefGoogle Scholar
  42. Manderson, J,A., Mosse, P.R.L., Safstrom, J.A., Young, S.B. and Campbell, G.R., 1989, Balloon catheter injury tp rabbit carotid artery. I. Changes in smooth muscle phenotype. Arteriosclerosis 9:289–298.PubMedCrossRefGoogle Scholar
  43. Martin, B.M., Gimborne, M.A. Jr., Unanue, E.R. and Cotran, R.S., 1981, Stimulation of nonlymphoid mesenchymal cell proliferation by a macrophage-derived growth factor. J. Immunol. 126:1510–1515.PubMedGoogle Scholar
  44. Mosse, P.R.L., Campbell, G.R. and Campbell, J.H., 1986, Smooth muscle phenotypic expression in human carotid arteries. II. Comparison of cells from areas of atherosclerosis-free diffuse intimai thickenings with those of the media. Arteriosclerosis 6:664–670.PubMedCrossRefGoogle Scholar
  45. Mosse, P.R.L., Campbell, G.R., Wang, Z-L. and Campbell, J.H., 1985, Smooth muscle phenotypic expression in human carotid arteries. I. Comparison of cells from diffuse intimai thickenings adjacent to atheromatous plaques with those of the media. Lab. Invest. 53:555–562.Google Scholar
  46. Nathan, CF., Murray, H.W. and Cohn, Z.A., 1980, The macrophage as an effector cell. N. Eng. J. Med. 303:622–626.CrossRefGoogle Scholar
  47. Orekhov, A.M., Karpova, I.I., Tertov, V.V., Rudchenko, S.A., Andreeva, E.R., Krushinsky, A.V. and Smirnov, V.N., 1984, Cellular composition of atherosclerotic and uninvolved human aortic subendothelial intima. Light microscopic study of dissociated aortic cells. Am. J. Pathol. 115:17–24.PubMedGoogle Scholar
  48. Orekhov, A.N., Andreeva, E.R., Krushinsky, A.V., Novikov, I.D., Tertov, V.V., Nestaiko, G.V., Khashimov, Kh.A., Repin, V.S. and Smirnov, V.N., 1986, Intimal cells and atherosclerosis. Relationship between the number of intimai cells and major manifestations of atherosclerosis in the human aorta. Am. J. Pathol. 125:402–415.PubMedGoogle Scholar
  49. Osborn, M., Caselitz, K., Püschel and Weber, K., 1987, Intermediate filament expression in human vascular smooth muscle and in arteriosclerotic plaques. Virchows Arch. A. 411:449–458.CrossRefGoogle Scholar
  50. Page, R.C., Davies, P. and Allison, A.C., 1978, The macrophage as a secretory cell. Int. Rev. Cytol. 52:119–157.PubMedCrossRefGoogle Scholar
  51. Parry, G., Cullen, B., Kaetzel, C.S., Kramer, R. and Moss, L., 1987, Regulation of differentiation and polarized secretion in mammary epithelial cells maintained in culture: Extracellular matrix and membrane polarity influences. J. Cell Biol. 105:2043–2051.PubMedCrossRefGoogle Scholar
  52. Rennick, R.E., Campbell, J.H. and Campbell, G.R., 1988, Vascular smooth muscle phenotype and growth behaviour can be influence by macrophages in vitro, Atherosclerosis 71:35–43.PubMedCrossRefGoogle Scholar
  53. Saunders, S. and Bernfield, M., 1988, Cell surface proteoglycan binds mouse mammary epithelial cells to fibronectin and behaves as a receptor for interstitial matrix. J. Cell Biol. 106:423–430.PubMedCrossRefGoogle Scholar
  54. Savion, N., Vlodavsky, I. and Fuks, Z., 1984, Interactions of T lymphocytes and macrophages with cultured vascular endothelial cells: Attachment, invasion and subsequent degradation of the subendothelial extracellular matrix. J. Cell Physiol. 118:169–178.PubMedCrossRefGoogle Scholar
  55. Schroeder, J.S., Bolen, J.L., Quint, R.A., Clarke, D.A., Hayden, W.G., Higgins, C.B. and Wexler, L., 1977, Provocation of coronary spasm with ergonovine maleate. New test with results in 57 patients undergoing coronary arteriography. Am. J. Cardiol. 40:487–491.PubMedCrossRefGoogle Scholar
  56. Shimokado, K., Raines, E.W., Madtes, D.K., Barnett, T.B., Benditt, E.R. and Ross, R., 1985, A significant part of macrophage-derived growth factor consists of at least two forms of PDGF. Cell 43:277–286.PubMedCrossRefGoogle Scholar
  57. Sporn, M.B. and Roberts, A.B., 1986, Peptide growth factors and inflammation, tissue repair and cancer. J. Clin. Invest. 78:329–332.PubMedCrossRefGoogle Scholar
  58. Tertov, V.V., Orekhov, A.N., Grigorian, G.Yu., Kurennaya, G.S., Kudryashov, S.A., Tkachuk, V.A. and Smirnov, V.N., 1987, Disorders in the system of cyclic nucleotides in atherosclerosis: Cyclic AMP and cyclic GMP content and activity of related enzymes in human aorta. Tissue and Cell 19:21–28.PubMedCrossRefGoogle Scholar
  59. Wilcox, J.N., Smith, K.M., Williams, L.T., Schwartz, S.M. and Gordon, D., 1988, Platelet-derived growth factor mRNA detected in human atherosclerotic plaques by in situ hybridisation. J. Clin. Invest. 82:1134–1143.PubMedCrossRefGoogle Scholar
  60. Wines, P.A., Schmitz, J.M., Pfister, S.L., Clubb Jr., F.J., Buja, L.M., Willerson, J.T. and Campbell, W.B., 1989, Augmented vasoconstrictor responses to serotonin precede development of atherosclerosis in aorta of WHHL rabbit. Arteriosclerosis 9:195–202.PubMedCrossRefGoogle Scholar
  61. Yamamoto, Y., Tomoike, H., Egashira, K. and Nakamura, M., 1987, Attenuation of endothelium-related relaxation and enhanced responsiveness of vascular smooth muscle to histamine in spastic coronary arterial segments from minature pigs. Circulation Res. 61:772–778.PubMedGoogle Scholar
  62. Yokoyama, J., Akita, H., Mizutani, T., Fukuzaki, H. and Watanabe, Y., 1983, Hyperreactivity of coronary arterial smooth muscles in response to ergonovine from rabbits with hereditory hyperlipidemia. Circulation Res. 53:63–71.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Gordon R. Campbell
    • 1
  • Julie H. Campbell
    • 1
  1. 1.Department of AnatomyUniversity of MelbourneParkvilleAustralia

Personalised recommendations