Vascular and Platelet Eicosanoids, Smoking and Atherosclerosis

  • J. Y. Jeremy
  • D. P. Mikhailidis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 273)


Vascular tissue synthesizes prostanoids (PGs) that modulate contractility, myocyte and fibroblast proliferation, platelet aggregation and leucocyte function, all of which are key components in the pathophysiology of atherogenesis. Furthermore, platelet and leucocyte release substances have been shown to stimulate the synthesis and release of PGs from vascular cells. It is possible, therefore, that vascular PGs are part of a protective response against atherogenic events. Consequently, any disruption of PG synthesis (viz. as a result of smoking) may accelerate the atherogenic state. Although smoking is a major risk factor in the development of atherosclerosis, the combination of smoking with other risk factor (e.g., diabetes, hypertension, hypercholesterolaemia) markedly increases the likelihood of death from atherosclerotic disease. The present paper therefore discusses the following:
  1. 1)

    How PGs relate to pathophysiology of atherosclerosis

  2. 2)

    Experimental findings on the effects of cigarette smoking on vascular and platelet prostanoid synthesis.

  3. 3)

    How other risk factors may interact with smoking to influence vascular permeability

  4. 4)

    Future directions and emphases on research into eicosanoids and smoking.



Cigarette Smoke Extract Arterial Smooth Muscle Cell Calcium Ionophore A23187 Prostacyclin Synthesis Prostanoid Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.D. Haust, R.H. More and H.Z. Movat. The role of smooth muscle cells in the fibrogenesis of arteriosclerosis. Am. J. Pathol. 37: 377 (1960).PubMedGoogle Scholar
  2. 2.
    R. Ross, J. Glomset and L. Harker. Response to injury and atherogenesis. Am. J. Pathol. 86: 675 (1977).PubMedGoogle Scholar
  3. 3.
    R. Ross and J.A. Glomset. The pathogenesis of atherosclerosis: an update. N. Engl. J. Med. 314: 488 (1977).CrossRefGoogle Scholar
  4. 4.
    R.G. Gerrity. The role of monocytes in atherosclerosis. I Transition of blood borne monocytes into foam cells in fatty lesions. Am. J. Pathol. 103: 181 (1981).PubMedGoogle Scholar
  5. 5.
    M.J. Mitchinson and R.Y. Ball. Macrophages and atherogenesis. Lancet 2: 146 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    P. Hadhazy, B. Malomvolgyi and K. Magyar. Endogenous prostanoids and arterial contractility. Prostagl. Leuk. Essential Fatty Acids Revs. 32: 175 (1988).CrossRefGoogle Scholar
  7. 7.
    V. Tsang, J.Y. Jeremy, D.P. Mikhailidis, R.K. Walesby, J.V. Wright and P. Dandona. The release of prostacyclin by the human aorta. Cardiovasc. Res. 22: 489 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Moncada, A. Herman, E.A. Higgs and J.R. Vane. Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the antithrombotic properties of vascular endothelium. Thromb. Res. 11: 323 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    N.L. Baenzinger, M.J. Dillender and P.W. Majerus. Cultured human fibroblasts and arterial cells produce a labile platelet-inhibitory prostaglandin. Biochem. Biophys. Res. Commun. 78: 294 (1977).CrossRefGoogle Scholar
  10. 10.
    J.Y. Jeremy and P. Dandona. Effect of endothelium removal on stimulatory and inhibitory modulation of vascular prostacyclin synthesis. Br. J. Pharmacol. 96: 243 (1989).PubMedGoogle Scholar
  11. 11.
    J.Y. Jeremy, D.P. Mikhailidis and P. Dandona. Adrenergic modulation of vascular prostacyclin synthesis. Eur. J. Pharmacol. 114: 133 (1985).CrossRefGoogle Scholar
  12. 12.
    S.R. Coughlin, M.A. Moskowitz, H.N. Antoniades and L. Levine. Serotonin receptor-mediated stimulation of bovine smooth muscle cell prostacyclin synthesis and its modulation by platelet derived growth factor. Proc. Natl. Acad. Sci. 78: 7134 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    N.L. Baezinger, F.J. Fogerty, L.F. Mertz and L.F. Chernuta. Regulation of histamine-mediated prostacyclin synthesis in cultured human vascular endothelial cells. Cell. 24: 915 (1981).CrossRefGoogle Scholar
  14. 14.
    J.Y. Jeremy and P. Dandona. The role of the diacycl glycerol protein kinase C system in mediating adrenoceptor-prostacyclin synthesis coupling in the rat aorta. Eur. J. Pharmacol. 136: 311 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    J.Y. Jeremy and P. Dandona. Fluoride stimulates vascular prostacyclin synthesis: interrelationship of G proteins and protein kinase C. Eur. J. Pharmacol. 146: 279 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    J.Y. Jeremy, D.P. Mikhailidis and P. Dandona. Excitatory receptorprostanoid synthesis coupling in smooth muscle: mediation by calcium protein kinase C and G proteins. Prostagl. Leuk. Essential Fatty Acids Revs. 34: 215 (1988).Google Scholar
  17. 17.
    S. Moncada and J.R. Vane. Prostacyclin formation and effects. In Chemistry, Biology and Pharmacological activity of prostanoids. (S.M. Roberts and F. Scheinmann, eds.). Pergamon Press. p. 258 (1979).Google Scholar
  18. 18.
    J.J. Huttner, E.T. Gwebu, R.V. Panganamala, G.E. Milo and D.B. Cornwell. Fatty acids and their prostaglandin derivatives: inhibitors of proliferation in aortic smooth muscle cells. Science. 197: 289 (1977).PubMedCrossRefGoogle Scholar
  19. 19.
    H.D. Peters, B.A. Peskar and P.S. Schonhofer. Influence of prostaglandins on connective tissue cell growth and function. Naunyn Schmiedeberg’s Arch Pharmacol. 297: 587 (1977).Google Scholar
  20. 20.
    N. Owen. Prostacyclin can inhibit DNA synthesis in vascular smooth muscle cells. In Prostaglandins, leukotrienes and lipoxins. Biochemistry mechanisms of action and clinical applications. New York: Plenum Press. P. 193 (1985).Google Scholar
  21. 21.
    J. Nilsson and A.G. Olsson. Prostaglandin E1 inhibits DNA synthesis in arterial smooth muscle cells stimulated with platelet derived growth factor. Atherosclerosis 53: 77 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    P. Libby, S.J.C. Warner and G.B. Friedman. Interleukin 1: a mitogen for human vascular smooth muscle cells that induces the release of growth inhibitory prostanoids. J. Clin. Invest. 81: 487 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    K.B. Pomerantz and D.P. Hajjar. Eicosanoids in regulation of arterial smooth muscle cell phenotype, proliferative capacity and cholesterol metabolism. Arteriosclerosis. 9: 413 (1989).PubMedCrossRefGoogle Scholar
  24. 24.
    B.B. Weksler, J.M. Knapp and E.A. Jaffe. Prostacyclin (PGI2) synthesized by cultured endothelial cells modulates polymorphonuclear leucocyte functions. Blood (Suppl 1): 287 (1977).Google Scholar
  25. 25.
    W. McClatchney and R. Snyderman. Prostaglandin and inflammation: enhancement of monocyte chemotactic responsiveness by prostaglandin E2. Prostaglandins 12: 415 (1976).CrossRefGoogle Scholar
  26. 26.
    R.B. Zurier. Prostaglandins and inflammation. In Prostaglandins. Biology and Chemistry of Prostaglandins and Related Eicosanoids. (P.B. Curtis, ed.) Churchill Livingstone, Edinburgh. p. 595 (1988).Google Scholar
  27. 27.
    J.Y. Jeremy, D.P. Mikhailidis, P. Dandona. The thromboxane A2 analogue U46619 stimulates vascular prostacyclin synthesis. Eur. J. Pharmacol. 107: 259 (1985).PubMedCrossRefGoogle Scholar
  28. 28.
    A. Van Coevorden and J.M. Boeynaems. Physiological concentrations of ADP stimulate the release of prostacyclin from bovine endothelial cells. Prostaglandins 27: 615 (1984).PubMedCrossRefGoogle Scholar
  29. 29.
    S.T. Test and N.U. Bang. Platelet activating factor stimulates prostacyclin synthesis by cultured human endothelial cells. Thromb. Haemostas. 46: 269 (1981).Google Scholar
  30. 30.
    S.R. Coughlin, M.A. Moskowits, B.R. Zetter, H.N. Antoniades and L. Levine. Platelet dependent stimulation of prostacyclin synthesis by platelet derived growth factor. Nature 288: 600 (1980).PubMedCrossRefGoogle Scholar
  31. 31.
    V.R. Rossi, P. Breviario, E. Ghezzi, E. Dejana and A. Mantovani. Prostacyclin synthesis induced in vascular cells by interleukin-1. Science. 299: 174 (1985).CrossRefGoogle Scholar
  32. 32.
    CR. Albrightson, N.L. Baenziger, and P. Needleman. Exaggerated human vascular cell prostaglandin biosynthesis mediated by monocytes: role of monokines and interleukin 1. J. Immunol. 135: 1872 (1985).PubMedGoogle Scholar
  33. 33.
    C.W. Benjamin, N.K. Hopkins, T.D. Oglesby and R.R. Gorman. Agonist specific desensitisation of leukotriene C4-stimulated PGI2 biosynthesis in human endothelial cells. Biochem. Biophys. Res. Comm. 117: 780 (1983).PubMedCrossRefGoogle Scholar
  34. 34.
    Pittilo R.M., Machie I.J., Rowles P.M., MacLinn S.J. and Woolf N. Effects of cigarette smoking on the ultrastructure of rat thoracic aorta and its ability to produce prostacyclin. Thromb. Haemostas. 48: 173 (1982).Google Scholar
  35. 35.
    K. Asmussen and K. Kjeldsen. Intimal ultrastructure of human umbilical arteries. Observations on arteries from newborn children of smoking and non-smoking mothers. Circ. Res. 36: 570 (1975).Google Scholar
  36. 36.
    J.L. Nadler, J.S. Velasco and R. Horton. Cigarette smoking inhibits prostacyclin formation. Lancet 1: 1248 (1983).PubMedCrossRefGoogle Scholar
  37. 37.
    C.H. Dadak, C.H. Leithner, H. Sinzinger and H. Silbergauer. Diminished prostacyclin formation in umbilical arteries born to women who smoke. Lancet 1: 94 (1981).PubMedCrossRefGoogle Scholar
  38. 38.
    J. Reinders, H. Brinkman, J. Van Mourik and P. De Groot. Cigarette smoke impairs endothelial cell prostacyclin production. Arteriosclerosis. 6: 15 (1986).PubMedCrossRefGoogle Scholar
  39. 39.
    H.A. Bull, R.M. Pittilo, N. Woolf and S.J. Machin. The effect of nicotine on human endothelial cell release of prostaglandins and ultrastructure. Br. J. Exp. Pathol. 69: 413 (1988).PubMedGoogle Scholar
  40. 40.
    A. Wennmalm and P. Alster. Nicotine inhibits vascular prostacyclin but not platelet thromboxane A2 synthesis. Gen. Pharmacol. 14: 189 (1983).PubMedGoogle Scholar
  41. 41.
    T. Sonnefeld and A. Wennmalm. Inhibition by nicotine of the foundation of prostacyclin-like activity in rabbit and human vascular tissue. Br. J. Pharmacol. 71: 609 (1980).Google Scholar
  42. 42.
    J.Y. Jeremy, D.P. Mikhailidis and P. Dandona. Cigarette smoke extracts but not nicotine inhibit prostacyclin (PGI2) synthesis in human, rabbit and rat vascular tissue. Prostagl. Leuk. Med. 19: 261 (1985).CrossRefGoogle Scholar
  43. 43.
    O. Ylikkorkola, L. Vinikka and P. Lehtovirta. Effects of nicotine on fetal prostacyclin and thromboxane in humans. Obstet. Gynecol. 66: 102 (1985).Google Scholar
  44. 44.
    J.Y. Jeremy, D.P. Mikhailidis and P. Dandona. Muscarinic stimulation of rat tracheal prostanoid synthesis: studies on the effects of calcium corticosteroids and cigarette smoke. Eur. J. Pharmacol. 162: 117 (1989).Google Scholar
  45. 45.
    J. Larruye, D. Daret, J. Demond-Henri, C. Aliieres and H. Bricaud. Prostacyclin synthesis in proliferative aortic smooth muscle cells. A kinetic in vivo and in vitro study. Atherosclerosis. 50: 63 (1984).CrossRefGoogle Scholar
  46. 46.
    L. Wilhelmsen. Coronary heart disease: epidemiology of smoking. Am. Heart J. 115: 242 (1985).CrossRefGoogle Scholar
  47. 47.
    T.W. Meade, M.V. Vickers, S.G. Thompson, Y. Stirling, A.P. Haines and G.J. Miller. Epidemiological characteristics of platelet aggregability. Br. Med. J. 290: 428 (1985).CrossRefGoogle Scholar
  48. 48.
    R.M. Jones. Smoking before surgery: the case for stopping. Br. Med. J. 290: 1763 (1985).CrossRefGoogle Scholar
  49. 49.
    A. Rosengren, L. Welin, A. Tsipogianni and L. Wilhelmsen. Impact of cardiovascular risk factors on coronary heart disease and mortality among middle aged diabetic men: a general population study. Br. Med. J. 299: 1127 (1989).CrossRefGoogle Scholar
  50. 50.
    J.Y. Jeremy, C.S. Thompson, D.P. Mikhailidis and P. Dandona. The effect of cigarette smoke and diabetes mellitus on muscarinic stimulation of prostacyclin synthesis by the rat penis. Diab. Res. 3: 467 (1986).Google Scholar
  51. 51.
    H. Wey and M. Subbiah. 6-keto-PGF synthesis in diabetic rat aorta: effect of substrate concentration and cholesterol feeding. Proc. Soc. Exp. Biol. Med. 171: 251 (1982).PubMedGoogle Scholar
  52. 52.
    E. Ernst, W. Koenig, A. Matrai, B. Filipiak, and J. Stieber. Blood rheology in healthy cigarette smokers. Results from the MONICA project, Augsburg. Arteriosclerosis 8: 385 (1988).PubMedCrossRefGoogle Scholar
  53. 53.
    R. Aitchinson and N. Russell. Smoking-a major cause of polycthaemia. J. Roy. Soc. Med. 81: 89 (1988).Google Scholar
  54. 54.
    T.W. Meade, J. Imeson and Y. Sterling. Effects of changes in smoking and other characteristics on clotting factors and the risk of IHD. Lancet 2: 986 (1987).PubMedCrossRefGoogle Scholar
  55. 55.
    G. Galea and R.J.L. Davidson. Haematological and haemorrheological changes associated with cigarette smoking. J. Clin. Pathol. 38: 978 (1985).PubMedCrossRefGoogle Scholar
  56. 56.
    C.G. Caro, M.J. Lever, K.H. Parker and P.J. Fish. Effects of cigarette smoking on the pattern of arterial blood flow: possible insight into mechanisms underlying the development of arteriosclerosis. Lancet 2: 11 (1987).PubMedCrossRefGoogle Scholar
  57. 57.
    D.P. Mikhailidis, M.A. Barradas, M.A. Maris, J.Y. Jeremy and P. Dandona. Fibrinogen mediated activation of platelet aggregation and thromboxane A2 release: pathological implications in vascular disease. J. Clin. Pathol. 38: 1166 (1985).PubMedCrossRefGoogle Scholar
  58. 58.
    C.S. Brischetto, W.E. Connor, S.L. Sonnor and J.D. Matarazzol. Plasma lipid and lipoprotein profiles of cigarette smokers from randomly selected families: enhancement of hyperlipidaemia and depression of high density lipoprotein. Am. J. Cardiol. 52: 675 (1983).PubMedCrossRefGoogle Scholar
  59. 59.
    D.P. Mikhailidis and M.A. Barradas. Haemostatic effects of lipid-lowering drugs. J. Drug Develop. 2: 69 (1989).Google Scholar
  60. 60.
    A. Kershbaum, R. Khorsandian, R.F. Caplan, S. Bellet and C.J. Feinberg. The role of catecholamine in the free fatty acid response to cigarette smoking. Circulation. 28: 52 (1983).Google Scholar
  61. 61.
    H. Takeda. H. Kishikawa, M. Shinoharta. Effect of alpha2 adrenoceptor antagonist on platelet activation during insulin-induced hypoglycaemia in type-2 (non-insulin dependent) diabetes mellitus. Diabetologia 31: 657 (1988).PubMedCrossRefGoogle Scholar
  62. 62.
    D.P. Mikhailidis, A.M. Mikhailidis, M.A. Barradas and P. Dandona. Effect of non-esterified essential fatty acids on the stability of prostacyclin activity. Metabolism 32: 717 (1983).PubMedCrossRefGoogle Scholar
  63. 63.
    J.Y. Jeremy, D.P. Mikhailidis and P. Dandona. Simulating the diabetic environment modifies in vitro vascular prostacyclin synthesis. Diabetes 32: 217 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. Y. Jeremy
    • 1
  • D. P. Mikhailidis
    • 1
  1. 1.Department of Chemical Pathology and Human Metabolism, Royal Free Hospital and School of MedicineUniversity of LondonLondonUK

Personalised recommendations