Neurotransmission in Hepatic Encephalopathy

  • M. L. Zeneroli
  • M. Baraldi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 272)


After a careful characterization, a rat model of fulminant hepatic failure galactosamine-induced was utilized in order to evaluate the neurochemical changes and the histological alterations which occur during the developing of the encephalopathy. Following these studies, normal rats were treated with toxins claimed to be the primary agents of hepatic encephalopathy to recognize those which are able to mimic the behavioral, electrophysiological and neurochemical changes found in the rat model of fulminant hepatic failure. With the limit due to informations coming from an experimental model, the symptoms of HE seem to be attributable to neurotoxic agents such as ammonia. The toxicity of ammonia does not seem to be due to a mere decrease of general brain metabolism, but seems rather to be mediated by an increase, at least in some compartment, of neurotoxic amino acids such as glutamate. Both accumulation of ammonia and the neurotoxic effect of glutamate seem to be potentiated by the described zinc depletion (both in liver and in brain). Hence the final effect of these phenomena is the development of the symptoms of encephalopathy triggered by an imbalance between inibitory and excitatory receptor systems in the brain associated with neuronal alterations which take place early and before the appearance of brain edema.


Hepatic Encephalopathy Gaba Receptor Visual Evoke Potential Fulminant Hepatic Failure Octanoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.L. Zeneroli, A. Penne, G. Parrinello, C. Cremonini, E. Ventura, Comparative evaluation of visual evoked potentials in experimental hepatic encephalopathy and in pharmacologically induced coma-like state in rat, Life Sci, 28: 1507–1515 (1982).CrossRefGoogle Scholar
  2. 2.
    M.L. Zeneroli, M. Baraldi, G. Pinelli, S. Grandi, C. Vezzelli, L. Contrucci, A. Penne, E. Ventura, Assessment of hepatic encephalopathy in experimental animals, in: “Advances in hepatic encephalopathy and urea cycle diseases”. G. Kleinberger, P. Ferenci, P. Rieder, H. Thaler, eds., Karger, Basel (1984).Google Scholar
  3. 3.
    M. Baraldi, M.L. Zeneroli, P. Ricci, E. Ventura, Down regulation of striatal dopamine receptors in experimental hepatic encephalopathy, Life Sci, 32: 1417–1425 (1983).PubMedCrossRefGoogle Scholar
  4. 4.
    M.L. Zeneroli, E. Ventura, M. Baraldi, A. Penne, A. Messori, L. Zieve, Visual evoked potentials in encephalopathy induced by galactosamine, ammonia, dimethyldisulfide and octanoic acid, Hepatology 2: 532–538 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Baraldi, M.L. Zeneroli, Experimental hepatic encephalopathy: changes in the binding of gamma-aminobutyric acid, Science 216: 427–429 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Baraldi, M.L. Zeneroli, Experimental hepatic encephalopathy: a model to study a distinct high-affinity GABA receptors, in: “Dynamics of neurotransmitter function“, H. Hanin, ed., Raven Press, New York, (1984).Google Scholar
  7. 7.
    A. Guidotti, M. Baraldi, and E. Costa, 1,4-Benzodiazepines and gamma-aminobutyric acid: pharmacological and biochemical correlates, Pharmacology 19: 267–277 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Baraldi, A. Guidotti, J.P. Schwartz, E. Costa, GABA receptors in clonal cell lines: a model for study of benzodiazepine action at molecular level, Science 205: 821–823 (1979).PubMedCrossRefGoogle Scholar
  9. 9.
    P.R. Schofield, M.G. Darlison, N. Fujita, Sequence and functional expression of the GABA-A receptor shows a ligand gated receptor super-family, Nature 328: 221–227 (1987).PubMedCrossRefGoogle Scholar
  10. 10.
    M.L. Zeneroli, E. Iuliano, G. Racagni, M. Baraldi, Metabolism of gamma-aminobutyric acid and brain uptake in galactosamine induced hepatic encephalopathy, J. Neurochem. 33: 1219–1222 (1982).CrossRefGoogle Scholar
  11. 11.
    J.I. Waddington, and A.J. Cross, Denervation supersensitivity in the striato-nigral GABA pathway, Nature 276: 618–620. (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    K. Gale, and M.J. Iadarola, GABAergic denervation of rat substantia nigra: functional and pharmacological properties, Brain Res. 183: 217–223 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    M. Baraldi, M. Massotti, M.L. Zeneroli, Characterization of GABA receptors solubilized from brain membranes of normal rat and in mild and severe stages of galactosamine-induced hepatic encephalopathy, in: “Advances in ammonia metabolism and hepatic encephalopathy”, P.B. Soeters, J.H.P. Wilson, A.J. Meijer, E. Holm, eds., Excerpta Medica, Amsterdam (1984).Google Scholar
  14. 14.
    M.L. Zeneroli and M. Baraldi, Increased functional activity of the GABA-benzodiazepine receptor unit in a rat model of hepatic encephalopathy: pharmacological evidence, Hepatology 8: 1388 (1988).CrossRefGoogle Scholar
  15. 15.
    R.A. Branch, M.H. Morgan, J. James, A.E. Read, Intravenous administration of diazepam in patients with chronic liver disease, Gut 17: 975–983 (1976).PubMedCrossRefGoogle Scholar
  16. 16.
    G. Bakti, H.U. Fisch, G. Karlaganis, Mechanism of the excessive sedative response of cirrhotics to benzodiazepine: model experiments with triazolam, Hepatology 7: 629–638 (1987).PubMedCrossRefGoogle Scholar
  17. 17.
    E. Costa, and A. Guidotti, Molecular mechanism in the receptor action of benzodiazepines, Ann. Rev. Pharmacol. Toxicol. 19: 531–545 (1979).CrossRefGoogle Scholar
  18. 18.
    E. Costa, and A. Guidotti, Neuropeptides as cotransmitters: modulatory effects at GABAergic synapses, in: “Psychopharmacology: the third generation of progress”, H.Y. Meltzer, ed., Raven Press, New York (1987).Google Scholar
  19. 19.
    M. Baraldi, M.L. Zeneroli, E. Ventura, A. Penne, G. Pinelli, P. Ricci, M. Santi., Supersensitivity of benzodiazepine receptor in hepatic encephalopathy due to fulminant hepatic failure in the rat: reversal by a benzodiazepine antagonist. Clin Sci. 67: 167–175 (1984).PubMedGoogle Scholar
  20. 20.
    G. Biggio, M.G. Corda, A. Concas, G.L. Gessa, Denervation supersensitivity for benzodiazepine receptors in rat substantia nigra, Brain Res. 220: 344–349 (1981).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Baraldi, M.L. Zeneroli, E. Ventura, G. Pinelli, P. Ricci, M. Santi, G. Racagni, E. Iuliano, I.Casciarri, M. Germini, E. Cavalletti, O. Tofanetti, Portal-systemic encephalopathy in dogs: Changes in brain GABA receptors and neurochemical correlates, in: “Advances in hepatic encephalopathy and urea cycle diseases”. G. Kleinberger, P. Ferenci, P. Rieder, H. Thaler, eds., Karger, Basel (1984).Google Scholar
  22. 22.
    M.L. Zeneroli, M. Baraldi, G. Pinelli; I. Casciarri, M. Germini, E. Cavalletti, O. Tofanetti, E. Ventura, Brain receptor changes in portal-systemic encephalopathy in dogs, Hepatology 5: 953 (1985).Google Scholar
  23. 23.
    D.F. Schafer, J.M. Fowler, P.J. Munson, A.K. Thakur, J.G. Waggoner, E.A. Jones, Gamma-aminobutyric acid and benzodiazepine receptors in an animal model of fulminant hepatic failure, J. Lab. Clin. Med. 102: 870–880 (1983).PubMedGoogle Scholar
  24. 24.
    U. Wysmyk-Cybula, Z. Dabrowiexki, J. Albrecht, Changes in the metabolism and binding of GABA in the rat brain in thioacetamide-induced hepatogenic encephalopathy, Biomed. Biochim. Acta. 3: 413–419 (1986).Google Scholar
  25. 25.
    J.E. Maddison, P.R. Dodd, J.A.R. Johnston, G.C. Farrell, Brain gamma-aminobutyric acid receptor binding is normal in rats with thioacetamide-induced hepatic encephalopathy despite elevated plasma gamma-aminobutyric acid-like activity, Gastroenterology 93: 1062–1068 (1987).PubMedGoogle Scholar
  26. 26.
    J.E. Maddison, P.R. Dodd, M. Morrison, G.A.R. Johnston, G.C. Farrel, Plasma GABA, GABA-like activity and the brain GABA-benzodiazepine receptor complex in rats with chronic hepatic encephalopathy, Hepatology 7: 621–628 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    P. Ferenci, P. Riederer, K. Jellinger, D.F. Schafer, E.A. Jones, Changes in cerebral receptors for gamma-aminobutyric acid in patients with hepatic encephalopathy, Liver 8: 225–230 (1988).PubMedGoogle Scholar
  28. 28.
    R.F. Butterworth, J. Lavoie, J.F. Giguere, and G. Pomier-Layrargues, Affinities and densities of high-affinity 3H-muscimol (GABA-A) binding sites and of central benzodiazepine receptors are unchanged in autopsied brain tissues from cirrhotic patients with hepatic encephalopathy, Hepatology 8: 1084–1088 (1988).PubMedCrossRefGoogle Scholar
  29. 29.
    J. Laidlaw, A.E. Read, and S. Sherlock, Morphine tolerance in hepatic cirrhosis. Gastroenterology 40: 389–396 (1961).PubMedGoogle Scholar
  30. 30.
    M.L. Zeneroli, E. Ventura, G. Pinelli, I. Casciarri, M. Germini, E. Cavalletti, O. Tofanetti, M. Baraldi, Opiate receptors and beta-endorphin levels in brain areas of dogs with portal-systemic encephalopathy, J. Hepatol. 1: 619–627 (1985).PubMedCrossRefGoogle Scholar
  31. 31.
    M.L. Zeneroli, M. Baraldi, E. Ventura, P. Zanoli, C. Vezzelli, A.M. Russo, Beta-endorphin and opiate receptors in acute and chronic models of hepatic encephalopathy, in: “Hepatic encephalopathy: pathophysiology and treatment”, G. Pomier Layrargue and R.F. Butterworth, eds., Humana Press, Clifton, 1989 (in press).Google Scholar
  32. 32.
    P. Ferenci, S.C. Pappas, P.J. Munson, A.E. Jones, Changes in glutamate receptors on synaptic membranes associated with hepatic encephalopathy or hyperammonemia in the rabbit, Hepatology 4: 25–29 (1984).PubMedCrossRefGoogle Scholar
  33. 33.
    R.F. Butterworth, J. Lavoie, J.C. Szerb, C. Peterson, C.W. Cotman, Excitatory amino acids in hepatic encephalopathy, in: “Proceedings of International symposium on Hepatic encephalopathy: pathophysiology and treatment”, Canada (1988).Google Scholar
  34. 34.
    M. Baraldi, E. Caselgrandi, P. Borella,and M.L. Zeneroli, Zinc content in brain tissue and GABA receptor function in experimental hepatic encephalopathy, in: “Application of behavioral pharmacology in toxicology,” C. Zbinden, U. Cuomo, G. Racagni, eds., Raven Pres, New York (1983).Google Scholar
  35. 35.
    M. Baraldi E. Caselgrandi, P. Borella and M.L. Zeneroli, Decrease of brain zinc in experimental hepatic encephalopathy. Brain Res. 258: 170–172 (1983)CrossRefGoogle Scholar
  36. 36.
    M. Baraldi, G. Pinelli, P. Ricci, M.L. Zeneroli, Zinc in experimental hepatic encephalopathy, in: “The neurobiology of zinc (part B)”, C.J. Frederickson, G.A. Howel, E.J. Kasarkis, eds,. Alan R. Liss, New York (1984).Google Scholar
  37. 37.
    M. Baraldi, E. Caselgrandi, M. Santi, Effect of zinc on specific binding of GABA to rat brain membranes, in: “The neurobiology of zinc (part A)”, C.J. Frederickson, G.A. Howel, E.J. Kasarkis, eds,. Alan R. Liss, New York (1984).Google Scholar
  38. 38.
    M. Baraldi, P. Zanoli, A. Benelli, M. Sandrini, A. Giberti, E. Caselgrandi, G. Tosi, C. Preti, Neurobe-havioral, neuroendocrine and neurochemical effects of zinc supplementation in rats, in. “Excitatory aminoacids and epilepsy”, R. Schwarcz, Y. Ben-Ari, eds., Plenum Press, New York (1986).Google Scholar
  39. 39.
    S. Peters, J. Koh, D.W. Choi, Zinc selectively blocks the action of n-methyl-d-aspartate on cortical neurons, Science 236: 589–592 (1987).PubMedCrossRefGoogle Scholar
  40. 40.
    G.L. Westbrook, M.L. Mayer, Micromolar concentrations of Zn antagonize NMDA and GABA responses of hippocampal neurons, Nature 328; 640–643 (1987).PubMedCrossRefGoogle Scholar
  41. 41.
    M. Baraldi, E. Delia Giustina, A.R. Botticelli, Evidence for degenerative changes in neurons in experimental hepatic encephalopathy. Falk Symposium N. 44, 240 (1986).Google Scholar
  42. 42.
    M. Baraldi, P. Zanoli, M.L. Zeneroli, R.A. Fano, R. Fante, G.P. Trentini, New experimental therapeutic approaches in hepatic encephalopathy induced in rats by galactosamine. Soc. Neurosci, 15: 934 (1989).Google Scholar
  43. 43.
    M. Baraldi, G. Pinelli, P. Ricci, M.L. Zeneroli, Toxins in hepatic encephalopathy: the role of the synergistic effect of ammonia, mercaptans and short chain fatty acids, Arch. Toxicol. 7: 103–106 (1984).CrossRefGoogle Scholar
  44. 44.
    M. Baraldi, M.L. Zeneroli, E. Ventura, C. Vezzelli C., An increase in cerebral benzodiazepine receptors induced by a subacute administration of ammonia, mercaptans and short chain fatty acids in rats. Clin. Sci. 6: 669–671 (1987).Google Scholar
  45. 45.
    M.L. Zeneroli, M. Baraldi, C. Vezzelli, E. Ventura, Neurochemical changes induced in brain of normal rats by the administration of ammonia, dimethyldisulfide and octanoic acid, in “Advances in ammonia metabolism and hepatic encephalopathy”, P.B. Soeters, J.H.P. Wilson, A.J. Meijer, E. Holm, eds., Excerpta Medica, Amsterdam (1984).Google Scholar
  46. 46.
    R.D. Adams, and J.M. Foley, The neurological disorders associated with liver disease, Annu. Rev. Nerv. Ment. Dis. Proc. 32: 198–215 (1953).Google Scholar
  47. 47.
    M. Victor, R. Adams, M. Cole M., The acquired (non-Wilsonian) type of chronic hepatocellular degeneration, Medicine 44: 345–396 (1965).PubMedCrossRefGoogle Scholar
  48. 48.
    A. Martinez, Electronmicroscopy in human hepatic encephalopathy, Acta Neuropatol. 11: 82–86 (1968).CrossRefGoogle Scholar
  49. 49.
    M.D. Norenberg, A light and Electron Microscopic Study in experimental portal-systemic (Ammonia) encephalopathy. Progression and Reversal of the Disorder, Lab. Invest 36: 618–627 (1977).PubMedGoogle Scholar
  50. 50.
    N.H. Diemer, Glial and neuronal changes in experimental hepatic encephalopathy. A quantitative morphological investigation, Acta Neurol. Scand. 58 (suppl 71): 1–143 (1978).CrossRefGoogle Scholar
  51. 51.
    H. Tubbs, J.D. Parker, L.M. Murray-Lyon, and Williams, R., Cortical and optic atrophy following fulminant hepatic failure, Med. Chir. Dig. 6: 75–77 (1977).PubMedGoogle Scholar
  52. 52.
    C. Toda, T. Chiba, Y. Matsuda, T. Imatome, T. Inoh, T. Fujita, A case of brain atrophy after fulminant hepatic failure, Am. J. Gastroenterol. 78: 446–447 (1983).PubMedGoogle Scholar
  53. 53.
    M.L. Zeneroli, G. Cioni, C. Vezzelli, S. Grandi, G. Crisi, and E. Ventura, Prevalence of brain atrophy in liver cirrhosis patients with chronic encephalopathy: evaluation by computed tomography, J. Hepatol. 4: 283–292 (1987).PubMedCrossRefGoogle Scholar
  54. 54.
    P. Bernthal, A. Hays, R.E. Tarter, D. Van Thield, J. Lecki, A. Hegedus, Cerebral CT scan abnormalities in cholestatic and hepatocellular disease and their relationship to neuropsychologic test performance, Hepatology 7: 107–114 (1987).PubMedCrossRefGoogle Scholar
  55. 55.
    M. Nieto-Sampedro, E.R. Lewis, C.W. Cotman, Brain injury causes a time-dependent increase in neurotrophic activity at the lesion site, Science 217: 860–861 (1982).PubMedCrossRefGoogle Scholar
  56. 56.
    G.A. Graveland, R.S. Williams, M. Difiglia, Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Hungtington’s disease, Science 227: 770–773 (1985).PubMedCrossRefGoogle Scholar
  57. 57.
    K.D. Mullen, J.V. Martin, W.B. Mendelson, M.L. Bassett, E.A. Jones, Could an endogenous benzodiazepine ligand contribute to hepatic encephalopathy?. Lancet 1: 457–459 (1988).PubMedCrossRefGoogle Scholar
  58. 58.
    K.D. Mullen, K.M. Szauter, K. Kaminsky, P.D. Tolentino, Benzodiazepine-like activity is present in plasma of patients with hepatic encephalopathy at pharmacologically active concentrations, Hepatology 8: 1254 (1988).CrossRefGoogle Scholar
  59. 59.
    M. Olasmaa, A. Guidotti, E. Costa, J.D. Rothstein, M.E. Goldman, R.J. Weber, S.M. Paul, Endogenous benzodiazepines in hepatic encephalopathy. Lancet 1: 491–492 (1989).PubMedCrossRefGoogle Scholar
  60. 60.
    M. Baraldi, P. Zanoli, M.L. Zeneroli, Hepatic Encephalopathy: Neurochemical mechanisms and new treatments, in: “GABA and Benzodiazepine receptor subtypes”, G. Biggio and E. Costa eds, Raven Press, New York, (in press).Google Scholar
  61. 61.
    M.L. Bassett, K.M. Mullem, P. Skolnick, E.A. Jones, A-melioration of hepatic encephalopathy by pharmacological antagonism of the GABA-A-Benzodiazepine receptor complex in a rabbit model of fulminant hepatic failure, Gastroenterology 93: 1069–1077 (1987).PubMedGoogle Scholar
  62. 62.
    G. Scollo-Lavizzari, Reversal of hepatic coma by benzodiazepine antagonist (Ro 15-1788), Lancet 1: 1324 (1985).CrossRefGoogle Scholar
  63. 63.
    G. Bansky, P.I. Meier, W.H. Zeigler, H. Walzer, M. Schmid, M. Huber, Reversal of hepatic encephalopathy by benzodiazepine antagonist (Ro 15–1788), Lancet 1: 1324–1325 (1985).Google Scholar
  64. 64.
    L.R. Sutherland, G.Y. Minuk, Ro 15–1788 and hepatic failure, Ann. Int. Med. 108: 158 (1988).PubMedGoogle Scholar
  65. 65.
    P. Ferenci, G. Grimm, S. Meryn, A. Gangl, Successful long-term treatment of portal-systemic encephalopathy by the benzodiazepine antagonist flumazenil, Gastroenterology 96: 240–243 (1989).PubMedGoogle Scholar
  66. 66.
    M. Lunzer, I.M. James, J. Weinman, S. Sherlock, Treatment of chronic hepatic encephalopathy with levodopa, Gut 15: 555–561 (1974).PubMedCrossRefGoogle Scholar
  67. 67.
    M.Y. Morgan, A.W. Jakobovits, J.M. James, S. Sherlock, Successful use of Bromocriptine in the treatment of chronic Hepatic encephalopathy, Gastroenterology 78; 663–670 (1980).PubMedGoogle Scholar
  68. 68.
    J.H. James, V. Ziparo, B. Jeppson, J.E. Fischer, Hyperammonemia, plasma aminoacid imbalance, and blood-brain aminoacid transport: a unified theory of portal-systemic encephalopathy. Lancet 2: 772–775 (1979).PubMedCrossRefGoogle Scholar
  69. 69.
    A.M. Hoyumpa, and S. Schenker, Perspective in hepatic encephalopathy, J. Lab. Clin. Invest. 100: 477–487 (1982).Google Scholar
  70. 70.
    F. Moroni, V. Caria, G. Lombardi, D. Pellegrini, G.L. Carasale, C. Cortesini, Excitatory aminoacids, tryptophan metabolites and endogenous neurotoxins in porta-caval shunted rats, in: “Advances in hepatic encephalopathy and urea cycle diseases”, G. Kleinberger, P. Ferenci, P. Rieder, H. Thaler, eds., Karger, Basel (1984).Google Scholar
  71. 71.
    S.M. Rothman, J.W. Olney. Excitotoxicity and the NMDA receptor, TINS10: 299–302 (1987).Google Scholar
  72. 72.
    D.W Choi, Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. TINS 11: 456–469 (1988).Google Scholar
  73. 73.
    I.J. Reynolds and R.J. Muller, Multiple sites for the regulation of the N-Methyl-D-Aspartate receptor,Mol. Pharmacol. 33: 581–584 (1988).PubMedGoogle Scholar
  74. 74.
    M.L. Zeneroli, M. Baraldi, P. Zanoli, R.A. Fano, R. Fante, G. P. Trentini, The administration of nerve growth factor and of monosialoganglioside counteracts the symptoms of encephalopathy in rats with fulminant hepatic failure, J. Hepatol. 9 (suppl. 1) S98 (1989).CrossRefGoogle Scholar
  75. 75.
    L.R. Williams, S. Varon, G.M. Peterson, K. Wictorin, W. Fischer, A. Bjorklund and F.H. Gage, Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection, Proc. Natl. Acad. Sci. U.S.A. 83; 9231–9235 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • M. L. Zeneroli
    • 1
  • M. Baraldi
    • 1
  1. 1.Modena UniversityItaly

Personalised recommendations