Skip to main content

Summary

We have developed an animal model of hyperammonemia consisting of feeding rats a diet containing ammonium acetate. Using this model we have found that hyperammonemia induces tubulin synthesis in brain. Initially tubulin accumulates rapidly (28% after 2 days on diet) and continues increasing but at a slower rate, reaching a 50% increase after 100 days on the diet. The effect is reversible, rats fed the ammonium diet return to normal levels of tubulin two days after withdrawal of the ammonium diet.

In contrast to the effect on brain, hyperammonemia did not increase tubulin content in liver or kidney. Moreover, the effect on brain is selective, with maximum increases of tubulin content in hippocampus, septum and reticular formation while other areas such as locus coeruleus and mammillary nucleus are not affected at all.

The results presented show that the induction of tubulin is a consequence of an increased polymerization of microtubules which in turn is due to an altered phosphorylation of microtubule-associated proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, S. H. and Fisher, B. (1961) Portacaval shunt in the rat. Surgery,50, 668–672.

    PubMed  CAS  Google Scholar 

  2. Norenberg, M. D. and Lapham, L.W. (1974) The astrocyte response in experimental portal-systemic encephalopathy. An electron microscopy study. J. Neuropathol. Exp. Neurol. 33, 422–435.

    Article  PubMed  CAS  Google Scholar 

  3. Prior, R.L. and Visek, W. J. (1972) Effects of urea hydrolysis on tissue metabolite concentrations in rats. Am. J. Physiol. 223, 1143–1149.

    PubMed  CAS  Google Scholar 

  4. Azorín, I., Minana, M.D., Felipo, V. and Grisolía, S. (1989) A simple animal model of hyperammonemia. Hepatology 10, 311–316.

    Article  PubMed  Google Scholar 

  5. Felipo, V., Minana, M.D. and Grisolía, S. (1988) Long-term ingestion of ammoniun increases acetylglutamate and urea levels without affecting the amount of carbamoyl-phosphate synthase. Eur. J. Biochem 176, 567–571.

    Article  PubMed  CAS  Google Scholar 

  6. Cohen, P. P. and Grisolía, S. (1948) The intermediate role of carbamyl-L-glutamic acid in citrulline synthesis. J. Biol. Chem. 174, 389–390.

    PubMed  CAS  Google Scholar 

  7. Grisolía, S. and Cohen, P. P. (1953) Study of carbon dioxide fixation in the synthesis of citrulline. J. Biol. Chem. 204, 753–757.

    PubMed  Google Scholar 

  8. Schott, K., Poetter, U. and Neuhoff, V. (1984) Ammonia inhibits protein synthesis in slices from young rat brain. J. Neurochem 42, 644–646.

    Article  PubMed  CAS  Google Scholar 

  9. Felipo, V., Miñana, M. D., Azorín, I. and Grisolía, S. (1988) Induction of rat brain tubulin following ammonium ingestion. J. Neurochem 51, 1041–1045.

    Article  PubMed  CAS  Google Scholar 

  10. Miñana, M. D., Felipo, V., Wallace, R. and Grisolía, S. (1988) High ammonia levels in brain induce tubulin in cerebrum but not in cerebellum, J. Neurochem. 51, 1839–1842.

    Article  PubMed  Google Scholar 

  11. Cleveland, D. W. and Sullivan, K. (1985) Molecular biology and genetics of tubulin. Ann. Rev. Biochem. 54, 331–365.

    Article  PubMed  CAS  Google Scholar 

  12. Webster, D. R. and Borisy, G. G. (1989) Microtubules are acetylated in domains that turn over slowly. J. Cell. Sci. 92, 57–65.

    PubMed  Google Scholar 

  13. Edde, B., Denoulet, P, Nechaud, D., Koulakoff, A., Berwald- Netter, Y. and Gros, F. (1989) Posttranslational modifications of tubulin in cultured mouse brain neurons and astroglia. Biol. Cell, 65, 109–117.

    PubMed  CAS  Google Scholar 

  14. Barra, H. S., Arce, C. A., Rodriguez, J. A. and Caputto, R. (1974) Some common properties of the protein that incorporates tyrosine as a single unit and the microtubule proteins. Biochem, Biophys. Res. Commun. 60, 1384–1390.

    Article  CAS  Google Scholar 

  15. Tran, L. H., Binet, S. and Meininger, V. (1987). Regional specificity of tubulin heterogeneity in adult mouse brain. Neurochem. Int. 10, 121–125.

    Article  PubMed  CAS  Google Scholar 

  16. Field, D. J., Collins, R. A. and Lee, J. C. (1984) Heterogeneity of brain tubulins. Proc. Natl. Acad. Sci. USA 81, 4041–4045.

    Article  PubMed  CAS  Google Scholar 

  17. Artvinli, S. (1987) Cytoskeleton, microtubules, tubulin and colchicine: A review. Cytologia 52, 189–198.

    Article  CAS  Google Scholar 

  18. Weiss, D. G., Seith-Tutter, D., Langford, G. M. and Allen, R. D. (1987) The native microtubule as the engine for bidirectional organelle movements. in Axonal Transport, Alan R. Liss, Inc. pp 91–111.

    Google Scholar 

  19. O’Connor, J. E., Costell, M. and Grisolía, S. (1984) Protective effect of L-carnitine on hyperammonemia. FEBS Lett. 166, 331–334.

    Article  PubMed  Google Scholar 

  20. Rousset, B. Bernier-Valentin, F. and Mornex, R. (1982) Biochemical aspects of the tubulin-microtubule system in non neural cells. in Hormones and cell regulation. Vol 6. Dumont, J. E., Nuñez, J. and Schultz, G., eds. pp 63–85. Elsevier Biomedical Press.

    Google Scholar 

  21. Ben-Ze’ev, A., Farmer, S. R. and Penman, S. (1978) Mechanisms of regulating tubulin synthesis in cultured mammalian cells. Cell 17, 319–325.

    Article  Google Scholar 

  22. Cleveland, D. W. (1988) Autoregulated instability of tubulin mRNAs: A novel eukaryotic regulatory mechanism. TIBS 13, 339–342.

    PubMed  CAS  Google Scholar 

  23. Miñana, M. D., Felipo, V. and Grisolía, S. (1989) Assembly and disassembly of brain tubulin is affected by high ammonia levels. Neurochem. Res. 14, 235–238.

    Article  PubMed  Google Scholar 

  24. Jameson, L, Frey, T., Zeeberg, B., Dalldorf, F. and Caplow, M. (1980) Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry l9, 2472–2479.

    Article  Google Scholar 

  25. Viereck, C., Tucker, R. P., Binder, L. I. and Matus, A. (1988) Phylogenetic conservation of brain microtubule-associated proteins MAP2 and Tau. Neurosci. 26, 893–904.

    Article  CAS  Google Scholar 

  26. Izant, J. G. and Mcintosh, J. R. . (1980) Microtubule-associated proteins: A monoclonal antibody to MAP2 binds to differentiated neurons. Proc. Natl. Acad. Sci. USA. 77, 4741–4745.

    Article  PubMed  CAS  Google Scholar 

  27. Perry, G. ed. (1987) Alterations in the neuronal cytoskeleton in Alzheimer Disease. Adv. Behav. Biol. Vol 34. Plenun Press.

    Google Scholar 

  28. Bancher, C., Brunner, C., Lassmann, H., Budka, H., Jellinger, K., Wiche, G., Seitelberger, F., Grundke-Iqbal, I., Iqbal, K. and Wisniewski, H. M. (1989) Accumulation of abnormally phosphorylated Tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res. 477, 90–99.

    Article  PubMed  CAS  Google Scholar 

  29. Grundke-Iqbal, I., Vorbrodt, A. W., Iqbal, K., Tung, Y-C., Wang, G. P and Wisniewski, H. N. (1988) Microtubule-assocciated polypeptides Tau are altered in Alzheimer paired helical filaments. Mol. Brain Res. 4, 43–52.

    Article  CAS  Google Scholar 

  30. Minana, M. D., Felipo, V., Quel, A., Pallardó, F. and Grisolía, S. (1989) Selective regional distribution of tubulin induced in cerebrum by hyperammonemia. 14. 1241–1243.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Miñana, MD., Felipo, V., Grisolía, S. (1990). Hyperammonemia Induces Brain Tubulin. In: Grisolía, S., Felipo, V., Miñana, MD. (eds) Cirrhosis, Hepatic Encephalopathy, and Ammonium Toxicity. Advances in Experimental Medicine and Biology, vol 272. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5826-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5826-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5828-2

  • Online ISBN: 978-1-4684-5826-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics