Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 272))

Summary

Ammonia is generated from a large number of metabolically important reactions. Despite its central importance in whole body nitrogen homeostasis excess ammonia is neurotoxic and its concentration must be kept low. Ammonia generated in most extrahepatic tissues is detoxified by incorporation into glutamine (amide). This glutamine may be used in a number of biosynthetic reactions (e.g. in pyrimidine synthesis). Alternatively, as a means of maintaining nitrogen balance, glutamine may be released to the blood. Resting skeletal muscle is particularly important 1) as a “sink” for removal of blood ammonia, and 2) as a major source of circulating glutamine. However, during vigorous exercise skeletal muscle may become a net contributor of ammonia to the blood. A few tissues and cell types (e.g. lymphocytes, macrophages, enterocytes, colonocytes, thymocytes, fibroblasts, bone) and tumors exhibit marked rates of glutamine utilization. In the kidney, glutamine is an important source of urinary ammonia. Ammonia generated from 1) the breakdown of nitrogenous substances in the gut, and 2) from the use of glutamine as a metabolic fuel in the small intestine, is taken up by the liver wherein it is detoxified by conversion to urea and to a lesser extent, glutamine. Some portal vein glutamine acts as a source of urea nitrogen. Ultimately, however, most excess ammonia nitrogen is detoxified indirectly (via glutamine (blood) ⇢ glutamine (small intestine) ⇢ ammonia (portal vein) or directly in the liver as urea. Portal-systemic shunting of blood, as occurs in chronic cirrhosis of the liver or following the surgical construction of a portacaval shunt results in portal blood bypassing the normal ammonia detoxification machinery of the liver. Under this condition blood ammonia levels rise markedly, increasing the burden on extrahepatic tissues, such as skeletal muscle, brain, and kidney, in maintaining ammonia homeostasis. The most commonly employed animal model of human liver disease is the rat in which an end-to-side portacaval shunt (PCS) has been surgically constructed. Brain glutamine synthetase activity is not increased in PCS rats and in some areas of the brain there may even be a decrease in activity. The brain glutamine synthetase appears to be working at near maximal capacity. Thus, the PCS rats exhibit profound neurological dysfunction when administered ammonium salts in amounts easily tolerated by normal animals. Because of the limited capacity of brain to remove excess ammonia, a rational approach to the treatment of patients with liver disease should include a regimen directed toward lowering the associated hyperammonemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.V. Eck (1877) Ligature of the Portal Vein. Med. J. St. Petersburg 130:1–2. (Translated by C.G. Child (1953) Eck’s Fistula. Surg. Gynecol. Obstet. 96: 375–376.)

    Google Scholar 

  2. F. Plum (1971). The CSF in hepatic encephalopathy. Exp. Biol. Med. 4: 34–41.

    PubMed  CAS  Google Scholar 

  3. A.J.L. Cooper and F. Plum (1987). Biochemistry and Physiology of Brain Ammonia. Physiol. Rev. 67: 440–519.

    PubMed  CAS  Google Scholar 

  4. A.M. Benjamin (1982). Ammonia. In: Handbook of Neurochemistry vol. 1 (2nd ed.), edited by A. Lajtha, New York: Plenum Pr-ess, pp. 117–137.

    Google Scholar 

  5. C. Beaubernard, F. Salomon, D. Grange, M.J. Thangapressam and J. Bismuth (1977). Experimental hepatic encephalopathy: changes in the level of wakefulness in the rat with portacaval shunt. Biomedicine: 27: 169–171.

    PubMed  CAS  Google Scholar 

  6. J.-F. Giguére and R.F. Butterworth (1984). Amino acid changes in regions of the CNS in relation to function in experimental portal-systemic encephalopathy. Neurochem. Res. 9: 1309–1321.

    Article  PubMed  Google Scholar 

  7. A. Gjedde, A.H. Lockwood, T.E. Duffy and F. Plum (1978). Cerebral blood flow and metabolism in chronically hyperammonemic rats: Effect of an acute ammonia challenge. Ann. Neurol. 3: 325–330.

    Article  PubMed  CAS  Google Scholar 

  8. B. Hindfelt, F. Plum and T.E. Duffy (1977). Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J. Clin. Invest. 59: 386–396.

    Article  PubMed  CAS  Google Scholar 

  9. G.B. Phillips, R. Schwartz, G.J. Gabuzda Jr. and S.C. Davidson (1952). The syndrome of impending hepatic coma in patients with cirrhosis of the liver given certain nitrogenous substances. N. Engl. J. Med. 247: 239–246.

    Article  PubMed  CAS  Google Scholar 

  10. W. Raabe and G. Onstad (1985). Porta-caval shunting changes neuronal sensitivity to ammonia. J. Neurol. Sci. 71: 307–314.

    Article  PubMed  CAS  Google Scholar 

  11. R.D. Adams and J.M. Foley (1953). The neurological disorder associated with liver disease. In: Metabolic and Toxic Diseases of the Nervous System, vol. 32, edited by H.H. Meritt and C.C. Hare. Williams and Wilkins, Baltimore, MD. pp. 198–237.

    Google Scholar 

  12. C.J. Bruton, J.A.N. Corsellis and A. Russell (1970). Hereditary hyperammonaemia. Brain 93: 423–434.

    Article  PubMed  CAS  Google Scholar 

  13. M.J. Mossakowski, K. Renkawek, Z. Kraśnicka, M. Śmiaek and A. Pronaszko (1970). Morphology and histochemistry of Wilsonian and hepatogenic gliopathy in tissue culture. Acta Neuropathol. 16: 1–16.

    Article  PubMed  CAS  Google Scholar 

  14. J.B. Gregorios, L.W. Mozes, L-.O.B. Norenberg, and M.D. Norenberg (1985). Morphologic effects of ammonia on primary astrocyte cultures. I. Light microscopic studies. J. Neuropathol. Exp. Neurol. 44: 397–403.

    Article  PubMed  CAS  Google Scholar 

  15. J.B. Gregorios, L.W. Mozes and M.D. Norenberg (1985). Morphologic effects of ammonia on primary astrocyte cultures. II. Electron microscopic studies. J. Neuropathol. Exp. Neurol. 44: 404–414.

    Article  PubMed  CAS  Google Scholar 

  16. C.W. Putnam, K.A. Porter and T.E Starzl (1976). Hepatic encephalopathy and light electron micrographic changes in the baboon after portal diversion. Ann. Surg. 184: 155–161.

    Article  PubMed  CAS  Google Scholar 

  17. P. Taylor, W.C. Schoene, W.A. Reid Jr. and F. von Lichtenberg (1979). Quantitative changes in astrocytes after portacaval shunting in chimpanzees and in man with normal liver parenchyma. Arch. Pathol. Lab. Med. 103: 82–85.

    PubMed  CAS  Google Scholar 

  18. J.A. Gutierrez and M.D. Norenberg (1977). Ultrastructural study of methionine sulfoximine-induced Alzheimer’s type II astrocytosis. Am. J. Pathol. 86: 285–300.

    PubMed  CAS  Google Scholar 

  19. G.E. Gibson, A. Zimber, L. Krook, E.P. Richardson and W.J. Visek (1974). Brain histology and behavior of mice treated with urease. J. Neuropath. Neurol. 33: 201–211.

    Article  CAS  Google Scholar 

  20. M.D. Norenberg (1977). A light and electron microscopic study of experimental portal-systemic (ammonia) encephalopathy. Lab. Invest. 36: 618–627.

    PubMed  CAS  Google Scholar 

  21. A.J. Zamora, J.B. Cavanagh and M.H. Kyu (1973). Ultrastructural responses of the astrocyte to portocaval anastomosis in the rat. J. Neurol. Sci. 18: 25–45.

    Article  PubMed  CAS  Google Scholar 

  22. H. Lausen and N.H. Diemer (1980). Morphometry of astrocyte and oligodendrocyte ultrastructure after portocaval anostamosis in the rat. Acta Neuropath. 51: 65–70.

    Article  Google Scholar 

  23. M.D. Norenberg (1981). The astrocyte in liver disease. Adv. Cell Neurobiol. 2: 303–352.

    Google Scholar 

  24. V.E. Shih (1978). Urea cycle disorders and other congenital hyperammonemic syndromes. In: The Metabolic Basis of Inherited Disease. Edited by J.B. Stanbury, J.B. Wyngaarden and D.S. Fredrickson. McGraw-Hill, New York, pp. 362–386.

    Google Scholar 

  25. M.M. Msall, M.L. Batshaw, R. Suss, S.W. Brusilow and E.D. Mellits (1984). Neurologic outcome in children with inborn errors of urea synthesis. N. Engl. J. Med. 310 : 1500–1505.

    Article  PubMed  CAS  Google Scholar 

  26. H.G. Windmueller and A.E. Spaeth (1974). Uptake and metabolism of plasma glutamine by the small intestine. J. Biol. Chem. 249: 5070–5079.

    PubMed  CAS  Google Scholar 

  27. H.G. Windmueller and A.E. Spaeth (1980). Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats. J. Biol. Chem. 255: 107–112.

    PubMed  CAS  Google Scholar 

  28. H.G. Windmueller and A.E. Spaeth (1981). Source and fate of circulating citrulline. Am. J. Physiol. 241: E473–E480.

    PubMed  CAS  Google Scholar 

  29. R.M. Biltz, J.M. Letteri, E-D. Pellegrino, A. Palekar and L.M. Pinkus (1983). Glutamine metabolism in bone. Min. Elect. Metab. 9: 125–131.

    CAS  Google Scholar 

  30. J.T. Tildon and H.R. Zielke (1988). Glutamine: an energy source for mammalian tissues. In: Glutamine and Glutamate in Mammals. Vol 1. Edited by E. Kvamme. CRC Press, Boca Raton, FL. pp. 167–182.

    Google Scholar 

  31. E.A. Newsholme, P. Newsholme and R. Curi (1987). The role of the citric acid cycle in cells of the immune system and its importance in sepsis, trauma and burns. Biochemistry Soc. Symp. 154: 145–161.

    Google Scholar 

  32. A.J.L. Cooper, E. Nieves, A.E. Coleman, S. Filc-DeRicco and A.S. Gelbard (1987). Short-term metabolic fate of [ 13N]ammonia in rat liver in vivo. J. Biol. Chem. 262: 1073–1080.

    PubMed  CAS  Google Scholar 

  33. D. Häussinger and W. Gerok (1986). Metabolism of amino acids and ammonia. In: Regulation of Hepatic Metabolism, edited by R.G. Thurman, F.C. Kauffman and K. Jungermann. Plenum Press, New York, pp. 253–291.

    Google Scholar 

  34. A.J.L. Cooper, E. Nieves, K.C. Rosenspire, S. Filc-DeRicco, A.S. Gelbard, and S.W. Brusilow (1988). Shortterm metabolic fate of 13N-labeled glutamate, alanine, and glutamine (amide) in rat liver. J. Biol. Chem. 263: 12268–12273.

    PubMed  CAS  Google Scholar 

  35. A.F.M. Moorman, J.L.M. Vermeulen, R. Charles and W.H. Lamers (1989). Localization of ammonia-metabolizing enzymes in human liver: Ontogenesis of heterogeneity. Hepatology: 10, 367–372.

    Article  Google Scholar 

  36. D. Häussinger (1989). Glutamine metabolism in the liver: Overview and current concepts. Metabolism 38 (Supplement 1) 14–17.

    Article  PubMed  Google Scholar 

  37. V. Pamiljans, P.R. Krishnaswamy, G. Dumville, and A. Meister (1962). Studies on the mechanism of glutamine synthesis; isolation and properties of the enzyme from sheep brain. Biochemistry : 1, 153–158.

    Article  PubMed  CAS  Google Scholar 

  38. N.S. Cohen, F.S. Kyan, S.S. Kyan, C-W. Cheung and L. Raijman (1985). The apparent Km of ammonia for carbamyl phosphate synthetase (ammonia) in situ. Biochem. J. 229: 205–211.

    PubMed  CAS  Google Scholar 

  39. A.J.L. Cooper, E. Nieves, S. Filc-DeRicco, and A.S. Gelbard (1988). Short-term metabolic fate of [13N]ammonia, L-[13N] alanine, L-[13N] glutamate, and L- [amide-13N] glutamine in normal rat liver in vivo. In:Advances in Ammonia Metabolism and Hepatic Encephalopathy, edited by P.B. Soeters, J.H.P. Wilson, A.J. Meijer and E. Holm. Elsevier, Amsterdam pp. 11–25.

    Google Scholar 

  40. D.E. Atkinson and E. Bourke (1987). Metabolic aspects of the regulation of systemic pH. Am. J. Physiol. 252: F947–F956.

    PubMed  CAS  Google Scholar 

  41. M. Walser (1986). Roles of urea production, ammonium excretion, and amino acid oxidation and acid-base balance. Am. J. Physiol. 250: F181–F188.

    CAS  Google Scholar 

  42. D. Häussinger and H. Sies (1979). Hepatic glutamine metabolism under the influence of the portal ammonia concentration in the perfused rat liver. Eur. J. Biochem. 101: 179–184.

    Article  PubMed  Google Scholar 

  43. D. Häussinger, W. Gerok and H. Sies (1983). Regulation of flux through glutaminase and glutamine synthetase in isolated perfused rat liver. Biochim. Biophys. Acta 755: 272–278.

    Article  PubMed  Google Scholar 

  44. M. Buttrose, D. McKellar and T.C. Welbourne (1987). Gutliver interaction in glutamine homeostasis: portal ammonia role in uptake and metabolism. Am. J. Physiol. 252: E746–E750.

    PubMed  CAS  Google Scholar 

  45. L. Lenzen, S. Soboll, H. Sies and D. Häussinger (1987). pH control of hepatic glutamine degradation. Role of transport. Eur. J. Biochem. 166: 483–488.

    Article  PubMed  CAS  Google Scholar 

  46. A.J. Meijer (1985). Channeling of ammonia from glutaminase into carbamoyl-phosphate synthetase in liver mitochondria. FEBS Lett 191: 249–251.

    Article  PubMed  CAS  Google Scholar 

  47. M. Walser and L.J. Bodenlos (1959). Urea metabolism in man. J. Clin. Invest. 38: 1617–1626.

    Article  PubMed  CAS  Google Scholar 

  48. O.M. Wrong, A.J. Vince and J.C. Waterlow (1985). The contribution of endogenous urea to faecal ammonia in man, determined by 15N labeling of plasma urea. Clin. Sci. 68: 193–199.

    PubMed  CAS  Google Scholar 

  49. A.J.L. Cooper (1988). L-Glutamate (2-oxoglutarate) aminotransferases. In: Glutamine and Glutamate in Mammals, Vol. 1. Edited by E. Kvamme. CRC Press, Inc., Boca Raton, FL. pp 123–152.

    Google Scholar 

  50. A.J.L. Cooper and A. Meister (1989). An appreciation of Professor Alexander E. Braunstein. The discovery and. scope of enzymatic transamination. Biochimie 71: 387–404.

    Article  PubMed  CAS  Google Scholar 

  51. A.H. Lockwood, J.M. McDonald, R.E. Reiman, A.S. Gelbard, J.S. Laughlin, T.E. Duffy and F. Plum (1979). The dynamics of ammonia metabolism in man. Effects of liver disease and hyperammonemia. J. Clin. Invest. 63: 449–460.

    Article  PubMed  CAS  Google Scholar 

  52. P. Babij, S.M. Matthews and M.J. Rennie (1983). Changes in blood ammonia, lactate and amino acids in relation to workload during bicycle ergometric exercise in man. Eur. J. App. Physiol. Occup. Physiol 50: 405–411.

    Article  CAS  Google Scholar 

  53. E.W. Banister, M.E. Allen, I.B. Mekjavic, A.K. Singh, B. Legge and B.J.C. Mutch (1983). The time course of ammonia and lactate accumulation in blood during bicycle exercise. Eur. J. Appl. Physiol. Occup. Physiol 51: 195–202.

    Article  CAS  Google Scholar 

  54. G. A. Dudley, R.S. Staron, T.F. Murray, F.C. Hagerman and A. Luginbuhl (1983). Muscle fiber composition and blood ammonia levels after intense exercise in humans. J. Appl. Physiol. 54: 582–586.

    PubMed  CAS  Google Scholar 

  55. R.A. Meyer, G.A. Dudley and R.L. Terjung (1980). Ammonia and IMP in different skeletal muscle fibers after exer cise in rats. J. Appl. Physiol. 49: 1037–1041.

    PubMed  CAS  Google Scholar 

  56. E.W. Banister and B.J.C. Cameron (1989). Exercise-induced hyperammonemia: peripheral and central effects. Int. J. Sports Med. Vol. II; Supplement 2: S129–S142.

    Google Scholar 

  57. K. Iqbal and J.H. Ottaway (1970). Glutamine synthetase in muscle and kidney. Biochem. J. 119: 145–156.

    PubMed  CAS  Google Scholar 

  58. W.B. Rowe (1985). Glutamine synthetase from muscle. Methods Enzymol. 113: 199–212.

    Article  PubMed  CAS  Google Scholar 

  59. H. Shröck and L. Goldstein (1981). Interorgan relationships for glutamine metabolism in normal and acidotic rats. Am. J. Physiol. 240: E519–E525.

    Google Scholar 

  60. M.H.N. Golden, P. Jahoor and A.A. Jackson (1982). Glutamine production rate and its contribution to urinary ammonia in normal man. Clin. Sci. 62: 299–305.

    PubMed  CAS  Google Scholar 

  61. N. Bulus, E. Cersosimo, F. Ghishan and N.N. Abumrad (1989). Physiologic importance of glutamine. Metabolism 38: suppl. 1, 1–5.

    Article  PubMed  CAS  Google Scholar 

  62. E.B. Marliss, T.T. Aoki, T. Pozefsky, A.S. Most and G.F. Cahill Jr. (1971). Muscle and splanchnic glutamine and glutamate metabolism in postabsorptive and starved man. J.Clin. Invest. 50:814–817.

    Article  PubMed  CAS  Google Scholar 

  63. R.P. Durschlag and R.J. Smith (1985). Regulation of glutamine production by skeletal muscle cells in culture. Am. J. Physiol. 248: C442–C448.

    PubMed  CAS  Google Scholar 

  64. A.E. Harper, R.H. Miller and K.P. Block (1984). Branchedchain amino acid metabolism. Ann. Rev. Nutr. 4: 409–454.

    Article  CAS  Google Scholar 

  65. A.J.L. Cooper (1988). Glutamine synthetase. In: Glutamine and Glutamate in Mammals. Vol 1. Edited by E. Kvamme. CRC Press, Boca Raton, FL,. pp. 7–31.

    Google Scholar 

  66. J. Krivokapich, S.-C. Huang, M.E. Phelps, N.S. MacDonald and K.I. Shine (1982). Dependence of 13NH3 myocardial extraction and clearance on flow and metabolism. Am J. Physiol. 242: H536–H542.

    PubMed  CAS  Google Scholar 

  67. J. Krivokapich, J.R. Barrio, M.E. Phelps, C.R. Watanabe, R.E. Keen, H.C. Padgett, A. Douglas and K.I. Shine (1984). Kinetic characterization of 13NH3 and [13N] glutamine metabolism in rabbit heart. Am. J. Physiol. 246:H267–H273.

    PubMed  CAS  Google Scholar 

  68. B.R. Freed and A.S. Gelbard (1982). Distribution of 13N following intravenous injection of [13] ammonia in the rat. Can. J. Physiol. Pharmacol. 60: 60–67.

    Article  PubMed  CAS  Google Scholar 

  69. B.R. Freed and A.J.L. Cooper. Manuscript in preparation.

    Google Scholar 

  70. T.C. Welbourne (1988). Role of the lung in glutamine homeostasis. In: New Aspects of Renal Ammonia Metabolism. Contribution to Nephrology Vol. 63. Edited by G.M. Berlyne and S. Giovannetti. Karger, Basel, pp. 178–182.

    Google Scholar 

  71. H.B. Burch, A.W.K. Chan, T.R. Alvey and O.H. Lowry (1978). Localization of glutamine accumulation and tubular reabsorption in rat nephron. Kidney Int. 14: 406– 413.

    Article  PubMed  CAS  Google Scholar 

  72. H.B. Burch, S. Choi, W.Z. McCarthy, P.Y. Wong and O.H. Lowry (1978). The location of glutamine synthetase within the rat and rabbit nephron. Biochem. Biophys. Res. Commun. 82: 498–505.

    Article  PubMed  CAS  Google Scholar 

  73. T.C Welbourne and V. Phromphetcharat (1984). Renal glutamine metabolism and hydrogen ion homeostasis. In: Glutamine Metabolism in Mammalian Tissues. Edited by D. Häussinger and H. Sies. Springer-Verlag, Berlin, pp. 167– 170.

    Google Scholar 

  74. D.W. Good and M.A. Knepper (1985). Ammonia transport in the mammalian kidney. Am. J. Physiol. 248: F459–F471.

    PubMed  CAS  Google Scholar 

  75. A.C. Schoolwerth, B.L. Nazar and K.F. LaNoue (1978). Glutamate dehydrogenase activation and ammonia formation by rat kidney mitochondria. J. Biol. Chem. 253: 6177–6183.

    PubMed  CAS  Google Scholar 

  76. R.T. Bogusky and T.T. Aoki (1983). Early events in the initiation of ammonia formation in kidney. J. Biol. Chem. 258: 2795–2801.

    PubMed  CAS  Google Scholar 

  77. M.L. Halperin, P. Vinay, A. Gougoux, C. Pichette and R. L. Jungas (1985). Regulation of the maximum rate of renal ammoniagenesis in the acidotic dog. Am. J. Physiol. 248: F607–F615.

    PubMed  CAS  Google Scholar 

  78. J.M. Nishiitsuji-Uwo, B.D. Ross and H.A. Krebs (1967). Metabolic activities of the isolated perfused rat kidney. Biochem. J. 103: 852–862.

    Google Scholar 

  79. A.C. Damian and R.F. Pitts (1970). Rates of glutaminase 1 and glutamine synthetase reactions in rat kidney in vivo. Am.J. Physiol. 218: 1249–1255.

    PubMed  CAS  Google Scholar 

  80. A.J.L. Cooper (1988). Glutamine aminotransferases and ω -amidases. In: Glutamine and Glutamate in Mammals, edited by E. Kvamme. CRC Press Inc, Boca Raton, FL. pp. 33–52.

    Google Scholar 

  81. A.J.L. Cooper, L.K.H. Leung and Y. Asano (1989). Enzymatic cycling assay for phenylpyruvate. Anal. Biochem. 183: 210–214.

    Article  PubMed  CAS  Google Scholar 

  82. M.D. Norenberg and A. Martinez-Hernandez (1979). Fine structural localization of glutamine synthetase in astrocytes in rat brain. Brain Res. 161. 303–310.

    Article  PubMed  CAS  Google Scholar 

  83. A.J.L. Cooper; J.M. McDonald, A.S. Gelbard, R.F. Gledhill and T.E. Duffy (1979). The metabolic fate of 13N-labeled ammonia in rat brain. J. Biol. Chem. 254: 4982–4992.

    PubMed  CAS  Google Scholar 

  84. A.J.L. Cooper, S.N. Mora, N.F. Cruz and A.S. Gelbard (1985). Cerebral ammonia metabolism in hyperammonemic rats. J. Neurochem. 44. 1716–1723.

    Article  PubMed  CAS  Google Scholar 

  85. V. Schultz and J. M. Lowenstein (1976). Purine nucleotide cycle. Evidence for the occurrence of the cycle in brain. J. Biol. Chem. 251: 485–492.

    PubMed  CAS  Google Scholar 

  86. V. Schultz and J.M. Lowenstein (1978). The purine nucleotide cycle. Studies of ammonia production and interconversion of adenine and hypoxanthine nucleotides and nucleosides by rat brain in situ. J. Biol. Chem. 253: 1938–1943.

    PubMed  CAS  Google Scholar 

  87. A.M. Benjamin and J.H. Quastel (1975). Metabolism of amino acids and ammonia in rat brain cortex slices in vitro: a possible role of ammonia in brain function. J. Neurochem. 25: 197–206.

    Article  PubMed  CAS  Google Scholar 

  88. C.J. Van Den Berg (1973). A model of compartmentation in the brain based on glucose and acetate metabolism. In: Metabolic Compartmentation in the Brain, edited by R. Balazs and J.E. Cremer. Macmillan, London, pp. 137–166.

    Google Scholar 

  89. L. Hertz (1979). Functional interaction between neurons and astrocytes. 1. Turnover and metabolism of putative amino acid transmitters. Progr. Neurobiol. 13: 277–323.

    Article  CAS  Google Scholar 

  90. R.P. Shank and G. LeM. Campbell. a -Ketoglutarate and malate uptake and metabolism by synaptosomes. Further evidence for an astrocyte-to-neuron metabolic shuttle. J. Neurochem. 42: 1153–1161.

    Google Scholar 

  91. A.C.H. Yu, J. Drejer, L. Hertz and A. Schousboe (1962). Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J. Neurochem. 41: 1484–1487.

    Article  Google Scholar 

  92. S. Berl, G. Takagaki, D.D. Clarke and H. Waelsch (1962). Carbon dioxide fixation in the brain. J. Biol. Chem. 237: 2570–2573.

    PubMed  CAS  Google Scholar 

  93. R.P. Shank and M.H. Aprison (1988). Glutamate as a neurotransmitter. In: Glutamine and Glutamate in Mammals, Vol. II. Edited by E. Kvamme. CRC Press, Inc., Boca Raton, FL, pp. 3–19.

    Google Scholar 

  94. D. Häussinger and W. Gerok (1984). Hepatocyte heterogeneity in ammonia metabolism: impairment of glutamine synthesis in CCl4 induced liver cell necrosis with no effect on urea synthesis. Chem.-Biol. Interact. 48:191–194.

    Article  PubMed  Google Scholar 

  95. G. Perez, B. Rietberg and E. Schiff (1978). Amino acid release by isolated perfused cirrhotic liver. Life Sci. 23:2533–2538.

    Article  PubMed  CAS  Google Scholar 

  96. E.A. Jones, G.D. Cain and G. Dickinson (1972). Corticosteroid-induced changes in urea metabolism in patients with hepatocellular disease. Gastroenterology 62: 612– 617.

    PubMed  CAS  Google Scholar 

  97. D. Rudman, T.J. Difulco, J.T. Galambos, R. B. Smith III, A. A. Salam and W.D. Warren (1973). Maximal rates of excretion and synthesis of urea in normal and cirrhotic subjects. J. Clin. Invest. 52: 2241–2249.

    Article  PubMed  CAS  Google Scholar 

  98. H. Vilstrup (1980). Synthesis of urea after stimulation with amino acids: relation to liver function. Gut. 21: 990–995.

    Article  PubMed  CAS  Google Scholar 

  99. W. Gerok and D. Häussinger (1984). Ammonia detoxication and glutamine metabolism in severe liver disease and its role in the pathogenesis of hepatic encephalopathy. In:Glutamine Metabolism in Mammalian Tissues. Edited by D. Häussinger and H. Sies. Springer-Verlag, Berlin, Heidelberg, pp. 257–277.

    Chapter  Google Scholar 

  100. K.P. Maier, B. Volk, G. Hoppe-Seyler and W. Gerok (1974). Urea-cycle enzymes in normal liver and in patients with alcoholic hepatitis. Eur. J. Clin. Invest. 4: 193–195.

    PubMed  CAS  Google Scholar 

  101. R. Gebhardt and D. Mecke (1984). Cellular distribution and regulation of glutamine synthetase in liver. In: Glutamine Metabolism in Mammalian Tissues. Edited by D. Häussinger and H. Sies. Springer Verlag, Heidelberg, pp. 98–121.

    Chapter  Google Scholar 

  102. D. Häussinger, S. Kaiser, T. Stehle and W. Gerok. Structural and functional organization of hepatic ammonia metabolism: pathophysiological consequences. In:Advances in Ammonia Metabolism and Hepatic Encephalopathy. Edited by P.B. Soeters, J. H. P. Wilson,A.J. Meijer and E. Holm. Elsevier Science Publisher, Amsterdam, pp. 26–36.

    Google Scholar 

  103. O.P. Ganda and N.B. Ruderman (1976). Muscle nitrogen metabolism in chronic hepatic insufficiency. Metabolism 25: 427–435.

    Article  PubMed  CAS  Google Scholar 

  104. M. Imler, J.L. Schlienger and A. Frick (1978). Comparative study of ammonia and glutamine levels in blood and in cerebrospinal fluid in hepatic encephalopathy. In: Aminosauren, Ammoniak und hepatische Encephalopathie. Edited by F. Wewalka and B. Dragosics. G. Fischer, Stuttgart, pp. 105–117.

    Google Scholar 

  105. J.P. Colombo, J. Berüter, C. Bachmann and E. Peheim (1977). Enzymes of ammonia detoxication after portacaval shunt in the rat. 1. Carbamyl phosphate synthetase and aspartate transcarbamylase. Enzyme 22: 391–398.

    PubMed  CAS  Google Scholar 

  106. R.D. Steele (1984). Hyperammonemia and orotic aciduria in portacaval-shunted rats. J. Nutr. 114: 210–216.

    PubMed  CAS  Google Scholar 

  107. S.E. Hager and M.E. Jones (1967). A glutamine-dependent enzyme for the synthesis of carbamyl phosphate for pyri midine biosynthesis in fetal rat liver. J. Biol. Chem. 242: 5674–5680.

    PubMed  CAS  Google Scholar 

  108. P.J. Natale and G.C. Tremblay (1974). Studies on the availability of intramitochondrial carbamoylphosphate for utilization in extramitochondrial reactions in rat liver. Arch. Biochem. Biophys. 162: 357–368.

    Article  PubMed  CAS  Google Scholar 

  109. A.J.L. Cooper, T.E. Duffy, J.M. McDonald and A.S. Gelbard (1981). 13N as a tracer for studying ammonia uptake and metabolism in the brain. In: Advances in Chemistry, Series 197. Short-lived Radionucleides in Chemistry and Biology. Edited by J.W. Root and K.A. Krohn. American Chemical Society, Washington, D.C., pp. 369–388.

    Google Scholar 

  110. T.E. Duffy, F. Plum and A.J.L. Cooper (1983). Cerebral ammonia metabolism in vivo. In: Glutamine, Glutamate and GABA in the Central Nervous System. Edited by L. Hertz, E. Kvamme, E.G. McGeer and A. Schousboe. Alan R. Lis, New York, pp. 371–388.

    Google Scholar 

  111. N.F. Cruz and T.E. Duffy (1983). Local cerebral glucose metabolism in rats with chronic portacaval shunts. J. Cereb. Blood Flow Metab. 3: 311–320.

    Article  PubMed  CAS  Google Scholar 

  112. H.F. Bradford and H.K. Ward (1976). On glutaminase activity in mammalian synaptosomes. Brain Res. 110: 115–125.

    Article  PubMed  CAS  Google Scholar 

  113. R.F. Butterworth, G. Girard and J.— F. Giguére (1988). Regional differences in the capacity for ammonia removal by brain following portocaval anastomosis. J. Neurochem. 51: 486–490.

    Article  PubMed  CAS  Google Scholar 

  114. M. Ehlich, F. Plum and T.E. Duffy (1980). Blood and brain ammonia concentrations after portacaval anastomosis. Effect of acute ammonia loading. J. Neurochem. 34: 1538–1542.

    Article  Google Scholar 

  115. J.E. Cremer, D.F. Heath, H.M. Teal, M.S. Woods and J.B. Cavanagh (1975). Some dynamic aspects of brain metabolism in rats given a portocaval anastomosis. Neuropath. Appl. Neurobiol. 1. 293–311.

    Article  CAS  Google Scholar 

  116. T. Holmin and B.K. Seisjö (1974). The effect of portacaval anastomosis upon the energy state and upon acid-base parameters of the rat brain. J. Neurochem. 22: 403–412.

    Article  PubMed  CAS  Google Scholar 

  117. S.M. Fitzpatrick, H.P. Hetherington, K.L. Behar and R.G. Shulman (1989). Effects of acute hyperammonemia on cerebral amino acid metabolism and pH in vivo, measured by 1H and 31p nuclear magnetic resonance. J. Neurochem. 52 : 741–749.

    Article  PubMed  CAS  Google Scholar 

  118. L. Friolet, J.P. Colombo, F. Lazeyras, W.P. Aue, R. Kretschmer, A. Zimmerman and C. Bachman (1989). In vivo P NMR spectroscopy of energy rich phosphates in the brain of the hyperammonemic rat. Biochem. Biophys. Res. Comm. 159: 815–820.

    Article  PubMed  CAS  Google Scholar 

  119. T.E. Bates, S. R. Williams, R.A. Kauppinen, and D.G. Gadian (1989). Observation of cerebral metabolites in an animal model of acute liver failure in vivo: A 1H and 31p nuclear magnetic resonance study. J. Neurochem. 53: 102–110.

    Article  PubMed  CAS  Google Scholar 

  120. D.W. McCandless and S. Schenker (1981). Effect of acute ammonia intoxication on energy stores in the cerebral reticular activating system. Exp. Brain. Res. 44: 325–330.

    Article  PubMed  CAS  Google Scholar 

  121. B. Hindfelt (1983). Ammonia intoxication and brain energy metabolism. In: New Aspects of Clinical Nutrition. Edited by G. Kleinberger and E. Deutsch. Karger, Basel, pp 474–484.

    Google Scholar 

  122. O.H. Lowry and J.V. Passonneau (1966). Kinetic evidence for multiple binding sites on phosphofructokinase. J. Biol. Chem. 241:2268–2279.

    PubMed  CAS  Google Scholar 

  123. J.C.K. Lai and A.J.L Cooper (1986). Brain α-ketoglutarate dehydrogenase complex: kinetic properties,regional distribution and effects of inhibitors. J. Neurochem. 47: 1376–1386.

    Article  PubMed  CAS  Google Scholar 

  124. A. H. Lockwood, M.D. Ginsberg, H.M. Rhoades and M.T. Gutierrez (1986). Cerebral glucose metabolism in the rat. Patterns of metabolism and implications for the pathogenesis of hepatic coma. J. Clin. Invest. 78: 86–95.

    Article  PubMed  CAS  Google Scholar 

  125. A.M. Mans, J.F. Biebuyck, D.W. Davis, R.M. Bryan and R.A. Hawkins (1983). Regional cerebral glucose utilization in rats with portacaval anastomosis. J. Neurochem. 40: 986–991.

    Article  PubMed  CAS  Google Scholar 

  126. J.B. Posner and F. Plum (1960). The toxic effects of carbon dioxide and acetazolamide in hepatic encephalopathy. J. Clin. Invest. 39: 1246–1258.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Cooper, A.J.L. (1990). Ammonia Metabolism in Normal and Portacaval-Shunted Rats. In: Grisolía, S., Felipo, V., Miñana, MD. (eds) Cirrhosis, Hepatic Encephalopathy, and Ammonium Toxicity. Advances in Experimental Medicine and Biology, vol 272. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5826-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5826-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5828-2

  • Online ISBN: 978-1-4684-5826-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics