New Roles of Carnitine Metabolism in Ammonia Cytotoxicity

  • José Enrique O’Connor
  • Mercedes Costell
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 272)


High levels of ammonia in blood and brain due to metabolic disorders are associated with neurological abnormalities. Although the mechanism of ammonia toxicity at the CNS level is still unknown, alterations in brain energy metabolism, in neurotransmitter function and direct effects on nervous impulse have been proposed. In most hyperammonemic conditions morphological changes in the liver and brain have been demonstrated, especially in mitochondria, endoplasmic reticulum and lysosomes, together with an accumulation of intracellular lipids. The treatment of hyperammonemias is uncertain and mostly directed to reduce the level of circulating ammonia; there is no current therapy aimed to counteract the molecular effects of ammonia. Administration of carnitine prevents acute ammonia toxicity and enhances the efficacy of ammonia elimination as urea and glutamine. In addition the cytotoxic effects of ammonia, possibly arising from lipid peroxidation, are ameliorated by carnitine. These data indicate the feasibility of utilization of carnitine in the therapy of human hyperammonemic syndromes, both for reducing the levels of ammonia and preventing its toxic effects.


Hepatic Encephalopathy Sodium Benzoate Ammonia Elimination Carnitine Deficiency Ammonia Toxicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duffy TE and Plum F: Hepatic encephalopathy. In (Arias I, Popper H, Schachter D and Shafritz D, eds) The Liver: Biology and Pathobiology. New York, Raven Press, pp 693–795, 1982.Google Scholar
  2. 2.
    Walser M: Urea cycle disorders and other hereditary hyperammonemic syndromes. In (Stanbury JB, Wyngaarden JB and Fredrickson DS, eds) The Metabolic Basis of Inherited Diseases. New York, McGraw-Hill, pp 402–438. 1982.Google Scholar
  3. 3.
    Rosenberg, LE: Disorders of propionate, methylmalonate and cobalamin metabolism. In (Stanbury JB, Wyngaarden JB and Fredrikson DS, eds) The Metabolic Basis of Inherited Diseases. New York, McGraw-Hill, pp 411–429, 1978.Google Scholar
  4. 4.
    Coulter DL and Allen RJ: Hyperammonemia with valproic acid therapy. J. Pediat. 99: 317–319, 1981.PubMedCrossRefGoogle Scholar
  5. 5.
    Glasgow AM: The role of hyperammonemia in Reye’s syndrome. J. Natl. Reye’s Syndrome Found. 4: 24–31, 1984.Google Scholar
  6. 6.
    Hindfelt B, Plum F and Duffy TE: Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J. Clin. Invest. 59: 386–396. 1977.PubMedCrossRefGoogle Scholar
  7. 7.
    McCandless DW and Schenker S: Effect of acute ammonia intoxication on energy stores in the cerebral reticular activating system. Exp. Brain Res. 44: 325–330, 1981.PubMedCrossRefGoogle Scholar
  8. 8.
    Hamberger A, Hedquist B and Nistrom B: Ammonium ion inhibition of evoked release of endogenous glutamate from hippocampal slices. J. Neurochem. 33: 1295–1302, 1979.PubMedCrossRefGoogle Scholar
  9. 9.
    Ferenci P, Jacobs R, Pappas SC, Schafer DF and Jones EA: Enzymes of cerebral GABA metabolism and synaptosomal GABA uptake in acute liver failure in the rabbit: Evidence for decreased cerebral GABA-transaminase activity. J. Neurochem. 42: 1487–1490, 1984.PubMedCrossRefGoogle Scholar
  10. 10.
    Raabe W and Lin S: Ammonia, postsynaptic inhibition and CNS-energy state. Brain Res. 303: 67–76; 1984.PubMedCrossRefGoogle Scholar
  11. 11.
    Conn HO and Lieberthal MN: The Hepatic Coma Syndromes and Lactulose. Baltimore, Williams and Wilkins, 1979.Google Scholar
  12. 12.
    Campbell AGM, Rosenberg LE, Snodgrass PJ and Nuzum CT: Ornithine transcarbamylase deficiency: a cause of lethal neonatal hyperammonemia in males. New England J. Med. 288: 1–6, 1973.CrossRefGoogle Scholar
  13. 13.
    Partin JC, Partin JS, Schubert WK and McLaurin RL: Brain ultrastructure in Reye’s syndrome encephalopathy and fatty alteration of the viscera. J. Neuropathol. Exp. Neurol. 34: 425–444, 1975.PubMedCrossRefGoogle Scholar
  14. 14.
    Popper H: Introduction. In (Keppler D, Popper H, Bianchi L and Reutter W, eds) Mechanisms of Hepatocyte Injury and Death. Lancaster, MTP Press, pp 11–30, 1984.Google Scholar
  15. 15.
    Partin JC, Schubert WK and Partin JS: Mitochondrial ultrastructure in Reye’s syndrome: Encephalopathy and fatty degeneration of the viscera. New England. J. Med. 258: 1339–1343, 1971.CrossRefGoogle Scholar
  16. 16.
    O’Connor JE, Costell M and Grisolía S. The potentiation of ammonia toxicity by sodium benzoate is prevented by L-carnitine. Biochem. Biophys. Res. Commun. 145: 817–824, 1987.PubMedCrossRefGoogle Scholar
  17. 17.
    O’Connor JE, Ribelles M and Grisolía S: Potentation of hyperammonemia by sodium benzoate: a note of caution. Eur. J. Pediatr. 138: 186–187, 1982.PubMedCrossRefGoogle Scholar
  18. 18.
    O’Connor JE, Guerri C and Grisolía S: Protective effect of ethanol on acute ammonia intoxication in mice. Biochem. Biophys. Res. Commun. 104: 410–415, 1982.PubMedCrossRefGoogle Scholar
  19. 19.
    O’Connor JE, Guerri C and Grisolía S: Protective effect of tert-butanol on hyperammonemia. New England J. Med. 347: 254, 1982.Google Scholar
  20. 20.
    Bremer J: Carnitine: Metabolism and functions. Physiol. Rev. 63: 1420–1480, 1983.PubMedGoogle Scholar
  21. 21.
    Hulsmann WC, Siliprandi D, Ciman M and Siliprandi N: Effect of carnitine on the oxidation of 2-oxoglutarate to succinate in the presence of acetoacetate or pyruvate. Biochim. Biophys. Acta 93: 166–168, 1964.CrossRefGoogle Scholar
  22. 22.
    O’Connor JE, Costell M and Grisolía S: Protective effect of L-carnitine on hyperammonemia. FEBS Lett. 166: 331–334, 1984.PubMedCrossRefGoogle Scholar
  23. 23.
    O’Connor JE, Costell M and Grisolía S: Prevention of ammonia toxicity by L-carnitine: Metabolic changes in brain. Neurochem. Res. 9: 563–569, 1984.PubMedCrossRefGoogle Scholar
  24. 24.
    O’Connor JE, Costell M, Miguez MP, Portoles M and Grisolía S: Effect of L-carnitine on ketone bodies, redox state and free aminoacids in the liver of hyperammonemic mice. Biochem. Pharmacol. 36: 3169–3173, 1987.PubMedCrossRefGoogle Scholar
  25. 25.
    Coates PM, Hale DE, Stanley CA and Glasgow AM: Systemic carnitine deficiency simulating Reye’s syndrome. J. Pediatr. 105: 679, 1984.PubMedGoogle Scholar
  26. 26.
    Roe CP and Bohan TP: L-Carnitine therapy in propionicacidemia. Lancet 1: 1411–1412, 1982.PubMedCrossRefGoogle Scholar
  27. 27.
    Ohtani Y, Endot F and Matsuda I: Carnitine deficiency and hyperammonemia associated with valproic acid therapy. J. Pediatr. 101: 782–785, 1982.PubMedCrossRefGoogle Scholar
  28. 28.
    Costell M, Miguez MP, O’Connor JE and Grisolía S: Effect of hyperammonemia on the levels of carnitine in mice. Neurology 37: 804–808, 1987.PubMedGoogle Scholar
  29. 29.
    O’Connor JE, Renau-Piqueras J and Grisolía S: Effects of urease-induced hyperammonemia in mouse liver. Ultrastructural, stereologic and biochemical study. Virchows Arch. (Cell Pathol.) 46: 187–197, 1984.CrossRefGoogle Scholar
  30. 30.
    Renau-Piqueras J, O’Connor JE, Baguena-Cervellera R and Grisolía S: Ammonium choride-induced alterations in growth kinetics and ultrastructure of murine neuroblastoma cells. A flow cytometric and stereologic study. Virchows Arch. (Cell Pathol.) 50: 271–283, 1986.CrossRefGoogle Scholar
  31. 31.
    O’Connor JE, Gollerkeri A and Kimler BF: Flow cytometric analysis of cytotoxic effects of ammonia on murine neuroblastoma. Bas. Appl. histochem. 32: 379, 1988.Google Scholar
  32. 32.
    O’Connor JE, Kimler BF, Gollerkeri A, Costell M and Grisolía S: Flow cytometric analysis of ammonia toxicity in cultured murine neuroblastoma cells. Cytometry (in press), 1990.Google Scholar
  33. 33.
    Petit PX, Costell M, O’Connor JE and Matthes M: Flow cytometry analysis of Rhl23 membrane potential related fluorescence in isolated mitochondria from hyperammonemic mice. Biol. Cell 67: 29a, 1989.Google Scholar
  34. 34.
    Recknagel OR: Carbon tetrachloride hepatotoxicity. Pharmacol. Rev. 19: 145–208, 1967.PubMedGoogle Scholar
  35. 35.
    Meister A and Anderson ME: Glutathione. Ann. Rev. Biochem. 52: 711–760, 1983.PubMedCrossRefGoogle Scholar
  36. 36.
    O’Connor JE, Costell M, Miguez MP and Grisolía S: Altera-ciones del metabolismo hepético de los acidos grasos en 1a hiperamonemia crónica experimental. Pharmacia Mediterranea 16: 846–857,1986.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • José Enrique O’Connor
    • 1
  • Mercedes Costell
    • 1
  1. 1.Instituto de Investigaciones CitológicasCaja de Ahorros de Valencia Centro Asociado del CSICValenciaSpain

Personalised recommendations