Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 272))

Abstract

In animals carnitine is formed from proteic lysine through a complex set of reactions, leading to deoxycarnitine, the immediate precursor of carnitine in all tissues. However the last stage, hydroxylation of deoxycarnitine to carnitine, is restricted to liver, brain and, in humans, kidney (1). Therefore other tissues can export deoxycarnitine via the blood stream to these hydroxylating tissues, but for their own endogenous carnitine depend either on the return and import of the newly synthesized compound or on an adequate dietary supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rebouche CJ. Comparative aspects of carnitine biosynthesis in microorganisms and mammals with attention to carnitine biosynthesis in man. In: Frenkel RA, McGarry JD, eds: Carnitine biosynthesis, metabolism and functions. New York: Academic Press, 1980; 57–67.

    Google Scholar 

  2. Feller AG, Rudman D. Role of carnitine in human nutrition. J Nutr 1988; 118: 541–547.

    PubMed  CAS  Google Scholar 

  3. Siliprandi N, Ciman M, Sartorelli L. Myocardial carnitine transport. In: Stam H, van der Vusse CJ, eds. Lipid metabolism in the normoxic and ischaemic heart. Darmstadt: Steinkopff Verlag, 1987; 53–62.

    Google Scholar 

  4. Sartorelli L, Ciman M, Mantovani G, Siliprandi N. Carnitine transport in rat heart slices II. The carnitine/deoxycarnitine antiport. Ital J Biochem 1985; 34: 282–287.

    PubMed  CAS  Google Scholar 

  5. Sartorelli L, Mantovani G and Ciman M. Effect of diazepam on the carnitine translocation in rat heart mitochondria. Biochem Biophys Res Commun 1989; 161: 295–299.

    Article  PubMed  CAS  Google Scholar 

  6. Sartorelli L, Mantovani G and Ciman M. Carnitine and deoxycarnitine concentrations in rat tissues and urine after their administration. Biochim Biophys Acta 1989; 1006: 15–18.

    PubMed  CAS  Google Scholar 

  7. Engel AG, Angelini C. Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome. Science 1973; 179: 899–902.

    Article  PubMed  CAS  Google Scholar 

  8. Bieber LL. Carnitine. Ann Rev Biochem 1988; 57: 261–283.

    Article  PubMed  CAS  Google Scholar 

  9. Bremer J. Carnitine: metabolism and functions. Physiol Rev 1983; 63: 1420–1480.

    PubMed  CAS  Google Scholar 

  10. Jenkins DL, Griffith OW. DL-aminocarnitine and acetyl-DL-aminocarnitine. Potent inhibitors of carnitine acyltransferases and hepatic triglyceride catabolism. J Biol Chem 1985; 260: 14748–14755.

    PubMed  CAS  Google Scholar 

  11. Brecher P. The interaction of long-chain acylCoA with membranes. Mol Cell Biochem 1983; 57: 3–15.

    Article  PubMed  CAS  Google Scholar 

  12. Toninello A, Branca D, Scutari G, Siliprandi N, Vincenti E, Giron G. L-carnitine effect on halothane treated mitochondria. Biochem Pharmacol 1986; 35: 3961–3964.

    Article  PubMed  CAS  Google Scholar 

  13. Pande SV, Blanchaer MC. Reversible inhibition of mitochondrial adenosine diphosphate phosphorylation by long chain acyl coenzyme A esters. J Biol Chem 1971; 246; 402–411.

    PubMed  CAS  Google Scholar 

  14. Siliprandi N, Di Lisa F, Sartorelli L. Transport and function of carnitine in cardiac muscle. In Berman MC, Gevers W, Opie LH, eds. Membrane and muscle. Oxford: ICSU Press, 1985; 105–119.

    Google Scholar 

  15. Watanabe H, Kobayashi A, Hyashi H, Yamazaki N. Effects of long chain acyl carnitine on membrane fluidity of human erythrocytes. Biochim Biophys Acta 1989; 980: 315–318.

    Article  PubMed  CAS  Google Scholar 

  16. Shug AL, Thompsen JH, Folts JD, et al. Changes in tissue levels of carnitine and other metabolites during myocardial ischaemia and anoxia. Arch Biochem Biophys 197 8; 187: 25–33.

    Article  PubMed  CAS  Google Scholar 

  17. Ferri L, Valente M, Ursini F, Gregolin C, Siliprandi N. Acetyl-carnitine formation and pyruvate oxidation in mitochondria from different rat tissues. Bull Mol Biol Med 1981; 6: 16–23.

    CAS  Google Scholar 

  18. Reed LJ, Yeman JJ. Pyruvate dehydrogenase. The Enzymes 1987; 18: 77–96.

    Article  CAS  Google Scholar 

  19. Whitehouse S, Cooper RH, Randle PJ. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J 1974; 141: 761–774.

    PubMed  CAS  Google Scholar 

  20. Ciman M, Caldesi-Valeri V, Siliprandi N. Carnitine and acetylcarnitine in skeletal and cardiac muscle. Int J Vit Nutr Res 1978; 48: 177–181.

    CAS  Google Scholar 

  21. Carter AL, Lennon LF, Stratman FW. Increased acetylcarnitine in rat skeletal muscle as a result of highintensity short-duration exercise. FEBS Lett. 1975; 52: 265–268.

    Article  Google Scholar 

  22. Uziel G, Garavaglia B, Di Donato S. Carnitine stimulation of pyruvate dehydrogenase complex (PDHC) in isolated human skeletal muscle mitochondria. Muscle & Nerve 1988; 11: 720–724.

    Article  CAS  Google Scholar 

  23. Siliprandi N, Sartorelli L, Ciman M, Di Lisa F. Carnitine: metabolism and clinical chemistry. Clin Chim Acta 1989; 183: 3–12.

    Article  PubMed  CAS  Google Scholar 

  24. Rizzon P, Biasco G, Boscia F, et al. High doses of L-carnitine in acute myocardial infarction: metabolic and antiarhythmic effects. Eur Heart J 1989; 10: 502–508.

    PubMed  CAS  Google Scholar 

  25. De Vivo DC, Uziel G. Disturbances of pyruvate metabolism in neuromuscular diseases. In: Scarlato G, Cerri C, eds. Mitochondrial pathology in muscle disease. Padova: Piccin Medical Books, 1983; 57–70.

    Google Scholar 

  26. Siliprandi N, Vecchiet L, Di Lisa F. Carnitine administration in physical exercise. In Benzi G ed. Advances in Myochemistry II. Paris: J Libbey Eurotext, 1989; 273–278.

    Google Scholar 

  27. Siliprandi N, Di Lisa F, Pieralisi G, Ripari P, Maccari F, Menabó R, Giamberardino MA, Vecchiet L. Metabolic changes induced by maximal exercise in human subjects following L-carnitine administration. Biochim Biophys Acta, 1990:1039:17–21.

    Article  Google Scholar 

  28. Chang TW, Goldberg AL. Leucine inhibits oxidation of glucose and pyruvate in skeletal muscle during fasting. J Biol Chem 1978; 253: 3696–3701.

    PubMed  CAS  Google Scholar 

  29. Hülsmann WC, Siliprandi D, Ciman M, Siliprandi N. Effect of carnitine on the oxidation of α -oxoglutarate to succinate in the presence of acetoacetate or pyruvate. Biochim Biophys Acta 1964; 93: 166–168.

    Article  Google Scholar 

  30. Harris RA, Powell SM, Paxton R, Gillin SE, Nagae H. Physiological covalent regulation of rat liver branched-chain α -ketoacid dehydrogenase. Arch Biochem Biophys 1985; 243: 542–555.

    Article  PubMed  CAS  Google Scholar 

  31. Schölte HR. The biochemical basis of mitochondrial diseases. J Bioenerg Biomembr 1988; 20: 161–191.

    Article  PubMed  Google Scholar 

  32. Chalmers RA, Roe CR, Tracey BM, Stacey RE, Hoppel CL, Millington DS. Secondary carnitine insufficiency in disorders of organic acid metabolism: modulation of acyl-CoA/CoA ratios by L-carnitine “in vivo”. Biochem Soc Trans 1983; 11: 724–725.

    CAS  Google Scholar 

  33. Di Mauro S, Bonilla E, Zeviani M, Nakagawa M, De Vivo DC. Mitochondrial myopathies. Ann Neurol 1985; 17: 521–538.

    Article  Google Scholar 

  34. Costell M, O’Connor JE, Grisolia S. Age-dependent decrease of carnitine content in muscle of mice and humans. Biochem Biophys Res Commun 1989; 161: 1135–1143.

    Article  PubMed  CAS  Google Scholar 

  35. Siliprandi N, Siliprandi D, Ciman M. Stimulation of oxidation of mitochondrial fatty acids and acetate by acetylcarnitine. Biochem J 1965; 96:: 777–780.

    PubMed  CAS  Google Scholar 

  36. Gadaleta MN, Petruzella V, Renis M, Fracasso F, Cantatora P. Reduced transcription of mitochondrial DNA in senescent rats: tissue dependence and effect of acetyl-L-carnitine. Eur J Biochem 1990; 181:501–506.

    Article  Google Scholar 

  37. Di Lisa F, Menabó R, Siliprandi N. L-propionylcarnitine protection of mitochondria in ischemic rat hearts. Mol Cell Biochem 1989; 88: 169–173.

    Article  PubMed  Google Scholar 

  38. Miotto G, Venerando R, Siliprandi N. Inhibitory action of isovaleryl-L-carnitine on proteolysis in perfused rat liver. Biochem Biophys Res Commun 1989; 158: 797–802.

    Article  PubMed  CAS  Google Scholar 

  39. Pontremoli S, Melloni E, Michetti M, Sparatore B, Salamino F, Siliprandi N, et al. Isovalerylcarnitine is a specific activator of calpain of human neutrophils. Biochem Biophys Res Commun 1987; 148: 1189–1195.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Siliprandi, N., Di Lisa, F., Menabó, R. (1990). Clinical Use of Carnitine Past, Present and Future. In: Grisolía, S., Felipo, V., Miñana, MD. (eds) Cirrhosis, Hepatic Encephalopathy, and Ammonium Toxicity. Advances in Experimental Medicine and Biology, vol 272. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5826-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5826-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5828-2

  • Online ISBN: 978-1-4684-5826-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics