Skip to main content

Cerebral Function in Hepatic Encephalopathy

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 272))

Abstract

Hepatic encephalopathy in patients may result from the surgical formation of a portacaval shunt, or chronic liver disease, often accompanied by portal systemic shunting (1, 2, 3). Whether the development of encephalopathy is caused by diversion of blood past the liver, decreased liver function, or both, is unknown. The symptoms of hepatic encephalopathy caused by portacaval shunting (pcs) or chronic liver dysfunction in man range from very subtle subclinical abnormalities of intellectual and motor function to coma. The apparent reversibility of these symptoms suggests that the encephalopathy has a metabolic etiology. Even in the absence of serious symptoms brain function is compromised and is more sensitive to a variety of metabolic disturbances which in normal individuals would cause no serious alterations in cerebral function (1,2).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoyumpa, A.M., Desmond, P.V., Avant, G.R., Roberts, R.K. and Schenker, S. Hepatic encephalopathy. Gastroenterology 76: 185–195, 1979.

    Google Scholar 

  2. Zieve, L. Hepatic encephalopathy (summary of present knowledge with an elaboration on recent developments), in Progress in Liver Diseases, Grune and Stratton, New York, pp. 327–341, 1979.

    Google Scholar 

  3. Misra, P. Hepatic encephalopathy. Med. Clin. Am. 65: 209–226, 1981.

    CAS  Google Scholar 

  4. Elsass, P., Lund, Y., and Ranek, L. Encephalopathy in patients with cirrhosis of the liver. A neuro-psychological study. Scand. J. Gastroenterol. 13: 241–247, 1978.

    CAS  Google Scholar 

  5. Rehnström, S., Simert, G., Hansson, J.A., Johnson, G., and Vang, J. Chronic hepatic encephalopathy. A psychometrical study. Scand. J. Gastroenterol. 12: 305–311, 1977.

    Article  PubMed  Google Scholar 

  6. Fazekas, J.F., Ticktin, H.E., Ehrmantraut, W. R., and Alman, R.W. Cerebral metabolism in hepatic insufficiency. Am. J. Med. 21: 843–849, 1956.

    Article  PubMed  Google Scholar 

  7. Erbslöh, F., Bernsmeier, A., and Hillesheim, H.R. Der Glucoseverbrauch des Gehirns und seine Abhängigkeit von der Leber. Arch. Psychiatr. Nervenkr. 196: 611–626, 1958.

    Article  Google Scholar 

  8. Bianchi-Porro, G., Maiolo, A.T., and Delia Porta, P. Cerebral blood flow and metabolism in hepatic cirrhosis before and after portacaval shunt operation. Gut 10: 894– 897, 1969.

    Article  PubMed  CAS  Google Scholar 

  9. Polli, E., Bianchi-Porro, G., and Maiolo, A.T. Cerebral metabolism after portacaval shunt. Lancet i, 153, 1969.

    Article  Google Scholar 

  10. Posner, J.P. and Plum, F. The toxic effects of carbon dioxide and acetazolamide in hepatic encephalopathy. J. Clin. Invest. 39: 1246–1258, 1960.

    Article  PubMed  CAS  Google Scholar 

  11. Maiolo, A.T., Porro, G.B., Galli, C., Sessa, M., and Polli, E.E. Brain energy metabolism in hepatic coma. Exp. Biol. Med., 4: 52–70, 1971.

    PubMed  CAS  Google Scholar 

  12. Morgan, M.Y., Jakobovits, A.W., James, I.M., and Sherlock, S. Successful use of bromocriptine in the treatment of chronic hepatic encephalopathy. Gastroenterology 78: 663–670, 1980.

    PubMed  CAS  Google Scholar 

  13. Bircher, J. The rat with portacaval shunt: an animal model with chronic hepatic failure. Pharmacol. Ther. 5: 219–222, 1979.

    Article  CAS  Google Scholar 

  14. Flynn, P.J. and Kennan, A.L. The rat with a portacaval anastomosis. Arch. Pathol. 85: 138–148, 1968.

    PubMed  CAS  Google Scholar 

  15. Herz, R., Sautter, V., and Bircher, J. Fortuitous discovery of urate nephrolithiasis in rats subjected to portacaval anastomosis. Experientia 27–28, 1972.

    Google Scholar 

  16. Herz, R., Sautter, V., Robert, F. and Bircher, J. The Eck fistula rat: definition of an experimental model. Eur. J. Clin. Invest. 2: 390–397, 1972

    Article  PubMed  CAS  Google Scholar 

  17. Tricklebank, M.D., Smart, J.L., Bloxam, D.L. and Curzon, G. Effects of chronic experimental liver dysfunction and L-tryptophan on behavior in the rat. Pharmacol. Biochem. Behav. 9: 181–189, 1978.

    Article  PubMed  CAS  Google Scholar 

  18. Warbritton, J.D. III,. Geyer, M.A., Jeppsson, B. and Fischer, J.E. Decreased startle reactivity in the end-toside portacaval shunted rat. Pharmacol. Biochem. Behav. 12: 739–742, 1980.

    Article  PubMed  CAS  Google Scholar 

  19. Küpfer, A. and Bircher, J. Mechanisms for the exaggerated sedative effect of pentobarbital in rats with experimental hepatic failure. Experientia 33: 807, 1977.

    Google Scholar 

  20. Mans, A.M,. Biebuyck, J.F., Davis, D.W., Bryan R.M., and Hawkins, R.A. Regional cerebral glucose utilization in rats with portacaval anastomosis. J. Neurochem. 40: 986–991, 1983.

    Article  PubMed  CAS  Google Scholar 

  21. Mans, A.M., Davis, D.W., Biebuyck, J.F. and Hawkins, R.A. Failure of glucose and branched-chain amino acids to normalize brain glucose use in portacaval shunted rats. J. Neurochem. 47: 1434–1443, 1986.

    Article  PubMed  CAS  Google Scholar 

  22. Cruz, N.F. and Duffy, T.E. Local cerebral glucose metabolism in rats with chronic portacaval shunts. J. Cereb. Blood Flow Metab. 3: 311–320, 1983.

    Article  PubMed  CAS  Google Scholar 

  23. Lockwood, A.H., Ginsberg, M.D., Rhoades, H.M. and Gutierrez, M.T. Cerebral glucose metabolism after portacaval shunting in the rat. J. Clin. Invest. 78: 86–95, 1986.

    Article  PubMed  CAS  Google Scholar 

  24. Mans, A., Hawkins, R. and Biebuyck, J. Regional cerebral glucose utilization after portacaval shunting. J. Cereb. Blood Flow Metab. 4: 123–126, 1984.

    Article  PubMed  CAS  Google Scholar 

  25. Eklöf, B., Holmin, T., Johannsson, H. and Siesjö, B.K. Cerebral blood flow and cerebral metabolic rate for oxygen in rats with portacaval anastomosis. Acta Physiol. Scand. 90: 337–344, 1974.

    Article  PubMed  Google Scholar 

  26. Nieto, C., Arias, J., Alsasua, A. and Garia de Jalon, P.D. Changes in brain oxidative metabolism in rats with portacaval shunt. Experientia 36: 1403–1404, 1980.

    Article  PubMed  CAS  Google Scholar 

  27. Gjedde, A., Lockwood, A.M., Duffy, T.E. and Plum. F. Cerebral blood flow and metabolism in chronically hyperammonemic rats: Effect of an acute ammonia challenge. Ann. Neurol. 3: 325–330, 1978.

    Article  PubMed  CAS  Google Scholar 

  28. Siesjö, B.K. Anaesthesia, analgesia and sedation. In: Brain Energy Metabolism, John Wiley & Sons, New York, pp. 233–265, 1978.

    Google Scholar 

  29. Davis, D.W. Regional cerebral energy metabolism during intravenous anesthesia with etomidate, ketamine or thiopental. Ph.D. Thesis, The Pennsylvania State University, 1987.

    Google Scholar 

  30. McCall, M.L. and Taylor, H.W. Effects of barbiturate sedation on the brain in toxemia of pregnancy. JAMA 149: 51–54, 1952.

    Article  CAS  Google Scholar 

  31. Mans, A.M., DeJoseph, M.R., Davis, D.W., Viña, J.R., and Hawkins, R.A. Early establishment of cereberal dysfunction after portacaval shunting. Am. J. Physiol. 259: E104 through E110, 1990.

    PubMed  CAS  Google Scholar 

  32. Hawkins, R.A., Mans, A.M. and Biebuyck, J.F. Regional blood-brain barrier permeability in hepatic encephalopathy. J. Cereb. Blood Flow Metab. 1: 5385–5386, 1981.

    Article  Google Scholar 

  33. Mans, A.M., Biebuyck, J.F., Shelly, K. and Hawkins. R.A. Regional blood-brain barrier permeability to amino acids after portacaval anastomosis, J. Neurochem. 38: 705–717, 1982.

    Article  PubMed  CAS  Google Scholar 

  34. Schafer, D.F. Hepatic coma: studies on the target organ (editorial). Gastroenterology 93: 1131–1134, 1987.

    PubMed  CAS  Google Scholar 

  35. Maddison, J.E., Dodd, P.R., Johnston, G. A.R. and Farrell, G.C. Brain gamma-aminobutyric acid receptor binding is normal in rats with thioacetamide-induced hepatic encephalopathy despite elevated plasma gamma-aminobutyric acid-like activity. Gastroenterology 93: 1062–1068, 1987.

    PubMed  CAS  Google Scholar 

  36. Baraldi, M. Zeneroli, M.L., and Ventura, E. Supersensitivity of benzodiazepine receptors in hepatic failure in the rat: reversal by a benzodiazepine antagonist. Clin. Sci. 67: 167–175, 1984.

    PubMed  CAS  Google Scholar 

  37. Mullen, K.D., Martin, J.V., Mendelson, W.B., Bassett, M.L. and Jones, E.A. Could an endogenous benzoadizepine ligand contribute to hepatic encephalopathy? Lancet i, 457–459, 1988.

    Article  Google Scholar 

  38. Basile, A.S., Gammal, S.H., Jones. E. A. and Skolnick, P. GABA-A receptor complex in an experimental model of hepatic encephalopathy: evidence for elevated levels of an endogenous benzodiazepine receptor ligand. J. Neurochem. 53: 1057–1063, 1989.

    Article  PubMed  CAS  Google Scholar 

  39. Butterworth. R.F., Lavoie, J., Peterson, C., Cotman, C.W. and Szerb, J.C. Excitatory amino acids and hepatic encephalopathy, in Hepatic Encephalopathy; pathophysiology and treatment (R.F. Butterworth and B.P. Layrargues, eds.) pp. 417–433, Humana Press, Clifton, New Jersey, 1989.

    Google Scholar 

  40. Martinez-Hernandez, A., Bell, K.P. and Norenberg, M.D. Glutamine synthetase: glial localization in brain. Science 195: 1356–1358, 1977.

    Article  PubMed  CAS  Google Scholar 

  41. Cooper, A., McDonald, J., Gelbard, A., Gledhill, R.F. and Duffy, T. The metabolic fate of 13N-labeled ammonia in rat brain. J. Biol. Chem. 254: 4982–4992, 1979.

    PubMed  CAS  Google Scholar 

  42. Hawkins, R.A., Miller, A.L., Nielsen, R.C. and Veech, R.L. The acute action of ammonia on rat brain metabolism “in vivo”. Biochem. J. 134: 1001–1008, 1973.

    PubMed  CAS  Google Scholar 

  43. Bessman, S. and Bessman, A. The cerebral and peripheral uptake of ammonia in liver disease with an hypothesis for the mechanism of hepatic coma. J. Clin. Invest. 34: 622– 628, 1954.

    Article  Google Scholar 

  44. Hawkins, R.A. and Mans, A.M. Intermediary metabolism of carbohydrates and other fuels. Handbook of Neurochemistry 3: 259–294, 1983.

    Google Scholar 

  45. Hindfelt, B. and Siesjö, B.K. Cerebral effects of acute ammonia intoxication, Scand. J. Clin. Lab. Invest. 28: 365–374, 1971.

    Article  PubMed  CAS  Google Scholar 

  46. McCandless, D.W. and Schenker, S. Effect of acute ammonia intoxication on energy stores in the cerebral reticular activating system. Exp. Brain Res. 44: 325–330, 1981.

    Article  PubMed  CAS  Google Scholar 

  47. McCandless, D.W., Looney, G.A., Modak, A.T. and Stavinoha, W.B. Cerebral acetylcholine and energy metabo lism changes in acute ammonia intoxication in the lower primate Tupaia glis. J. Lab. Clin. Med. 106: 183–186, 1985.

    PubMed  CAS  Google Scholar 

  48. Cooper, A. and Plum, F. Biochemistry and physiology of brain ammonia. Physiol. Rev. 67: 440–519, 1987.

    PubMed  CAS  Google Scholar 

  49. Munro, H.N,. Fernstrom, J.D. and Wurtman, R.J. Insulin, plasma amino acid imbalance, and hepatic coma. Lancet i, 722–724, 1975.

    Article  Google Scholar 

  50. Fischer, J.E. and Baldessarini, R.J. False neurotransmitters and hepatic failure. Lancet ii, 75–79, 1971.

    Article  Google Scholar 

  51. Mans, A.M., Biebuyck, J.F., Davis, D.W. and Hawkins, R.A. Portacaval anastomosis: brain and plasma metabolite abnormalities and the effect of nutritional therapy. J. Neurochem. 43: 697–705, 1984.

    Article  PubMed  CAS  Google Scholar 

  52. Cummings, M.G., Soeters, P.B., James, J.H., Keane, J.M. and Fischer, J.E. Regional brain indoleamine metabolism following chronic portacaval anastomosis in the rat. J. Neurochem. 27: 501–509, 1976.

    Article  PubMed  CAS  Google Scholar 

  53. Curzon, G., Cantamaneni, B.D., Fernando, J.D., Woods, M.S. and Cavanagh, J.B. Plasma and brain tryptophan changes in experimental acute hepatic failure. J. Neurochem. 24: 1065–1070, 1975.

    Article  PubMed  CAS  Google Scholar 

  54. Baldessarini, R.J. and Fischer, J.E. Serotonin metabolism in rat brain after surgical diversion of the portal venous circulation. Nature 245: 25–27, 1973.

    Article  CAS  Google Scholar 

  55. Kamata, S., Okada, A., Watanabe, T., Kawashima, Y. and Wada, H. Effects of dietary amino acids on brain amino acids and transmitter amines in rats with a portacaval shunt. J. Neurochem. 35: 1190–1199, 1980.

    Article  PubMed  CAS  Google Scholar 

  56. Simert, G., Nobin, A., Rosengren, E. and Vang, J. Neurotransmitter changes in the rat brain after portacaval anastomosis. Eur. Surg. Res. 10: 73–85, 1978.

    Article  PubMed  CAS  Google Scholar 

  57. Alsasua, P.A. and Arias, J. Niveles de catecholamines en distintas estructuras del cerebro de rata tras anastomosis portocava. Arch. Pharmacol. Toxicol. V: 97–102, 1979.

    Google Scholar 

  58. Dodsworth, J.M., James, J.H., Cummings, M.C. and Fischer, J.E. Depletion of brain noradrenaline in acute coma. Surgery 75: 811–820, 1974.

    PubMed  CAS  Google Scholar 

  59. Zieve, L. and Olsen, R.L. Can hepatic coma be caused by a reduction of brain noradrenaline or dopamine? Gut 18: 688–691, 1977.

    Article  PubMed  CAS  Google Scholar 

  60. Hoyumpa, A.M. and Schenker, S. Perspectives in hepatic encephalopathy. J. Lab. Clin. Med. 100: 477–487, 1982.

    PubMed  Google Scholar 

  61. Mans, A.M. and Hawkins, R.A. Brain monoamines after portacaval anastomosis. Metab. Brain Dis. 1: 45–52, 1986.

    Article  PubMed  CAS  Google Scholar 

  62. Bloxam, D.L. and Curzon, G. A study of proposed determinants of brain tryptophan concentration in rats with portacaval anastomosis or sham-operation. J. Neurochem. 31: 1255–1263, 1978.

    Article  PubMed  CAS  Google Scholar 

  63. James, J.H., Hodgman, J.M., Funovics, J.M., Yoshimura, N. and Fischer, J.E. Brain tryptophan, plasma-free tryptophan and distribution of plasma neutral amino acids. Metabolism 25: 471–476, 1976.

    Article  PubMed  CAS  Google Scholar 

  64. Brightman, M.W. and Reese, T.S. Junctions between intimately opposed cell membranes in the vertebrate brain. J. Cell Biol. 40: 648–677, 1969.

    Article  PubMed  CAS  Google Scholar 

  65. Pardridge, W.M. Brain metabolism: A perspective from the blood-brain barrier. Physiol. Rev. 63: 1481–1535, 1983.

    PubMed  CAS  Google Scholar 

  66. Hawkins, R.A. and Biebuyck, J.F. Ketone bodies are se lectively used by individual brain regions. Science 205: 325–327, 1979.

    Article  PubMed  CAS  Google Scholar 

  67. Bryan, R.M., Keefer, K.A. and MacNeill, C. Regional cerebral glucose utilization during insulin-induced hypoglycemia in anesthetized rats. J. Neurochem. 46. 1904– 1911, 1986.

    Article  PubMed  CAS  Google Scholar 

  68. James, J.H., Escourrou, J. and Fischer, J.E. Blood-brain neutral amino acid transport activity is increased after portacaval anastomosis. Science 200: 1395–1397, 1978.

    Article  PubMed  CAS  Google Scholar 

  69. Hawkins, R.A., Mans, A.M. and Biebuyck, J.F. Alterations in amino acid transport across blood-brain barrier in rats following portacaval shunting, in Amino Acids: Metabolism and Medical Applications, pp. 239–253, John Wright, PSG In., Boston, 1983.

    Google Scholar 

  70. Sarna, G.S., Bradbury, M.W.B., Cremer, J.E., Lai, J.C.K. and Teal, H.M. Brain metabolism and specific transport at the blood-brain barrier after portacaval anastomosis in the rat. Brain Res. 160: 69–83, 1979.

    Article  PubMed  CAS  Google Scholar 

  71. Zanchin, G., Rigotti, P., Dussini, N., Vassanelli, P., and Battistin, L. Cerebral amino acid levels and uptake in rats after portacaval anastomosis: II. Regional studies “in vivo”. J. Neurosci. Res. 4: 301–310, 1979.

    Article  PubMed  CAS  Google Scholar 

  72. Livingston, A.S., Potvin, M., Goresky, C.A., Finlayson, M.H. and Hinchey, E.J. Changes in the blood-brain barrier in hepatic coma after hepatectomy in the rat. Gastroenterology 73: 697–704, 1977.

    Google Scholar 

  73. Mans, A.M., Biebuyck, J.F., Saunders, S.J., Kirsch, R.E. and Hawkins, R.A. Tryptophan transport across the blood-brain barrier during acute hepatic failure. J. Neurochem. 33: 409–418, 1979.

    Article  PubMed  CAS  Google Scholar 

  74. Brender, J., Andersen, P.E. and Rafaelsen. O.J. Blood-brain barrier transfer of D-glucose, L-leucine, and L-tryptophan in the rat. Acta Physiol. Scand. 93: 490–499, 1975.

    Article  PubMed  CAS  Google Scholar 

  75. Etienne, P., Young, S.N. and Sourkes, T.C. Inhibition by albumin of tryptophan uptake by rat brain. Nature (London) 262: 144–145, 1976.

    Article  CAS  Google Scholar 

  76. James, J.H., Jeppsson, B., Ziparo, V. and Fischer, J.E. Hyperammonemia, plasma amino acid imbalance, and blood-brain amino acid transport: A unified theory of portalsystemic encephalopathy. Lancet ii, 772–775, 1979.

    Article  Google Scholar 

  77. Mans, A.M., Biebuyck, J.F. and Hawkins, R.A. Ammonia selectively stimulates neutral amino acid transport across blood-brain barrier. Am. J. Physiol. 245: C74–C77, 1983.

    PubMed  CAS  Google Scholar 

  78. Ehrlich, M., Plum, F. and Duffy, T.E. Blood and brain ammonia concentrations after portacaval anastomosis. Effect of acute ammonia loading. J. Neurochem. 34: 1538–1542, 1980.

    Article  PubMed  CAS  Google Scholar 

  79. Cavanagh, J.B. Liver bypass and the glia, in Brain Dysfunction in Metabolic Disorders, pp. 13–38, Raven Press, New York, 1974.

    Google Scholar 

  80. Cancilla, P.A. and DeBault, L.E. Neutral amino acid transport properties of cerebral endothelial cells “in vitro”. J. Neuropathol. Exp. Neurol. 42: 191–199, 1983.

    Article  PubMed  CAS  Google Scholar 

  81. DeBault, L.E. ŏ-Glutamyltranspeptidase induction mediated by glial foot process-to-endothelium contact in coculture. Brain Res. 220: 432–435, 1981.

    Article  PubMed  CAS  Google Scholar 

  82. DeBault, L.E. and Cancilla, P.A. Induction of ŏ-Glutamyl transpeptidase in isolated cerebral endothelial cells. Adv. Exp. Med. Biol. 131: 79–88, 1980.

    PubMed  CAS  Google Scholar 

  83. DeBault, L.E. and Cancilla, P.A. γ-Glutamyl transpeptidase in isolated brain endothelial cells: Induction by glial cells “in vitro”. Science 207: 653–655, 1980.

    Article  PubMed  CAS  Google Scholar 

  84. Vinters, H.V., Beck, D.W., Bready, J.V., Maxwell, K., Berliner, J.A., Hart, M.N. and Cancilla, P.A. Uptake of glucose analogues into cultured cerebral microvessel endothelium. J. Neuropathol. Exp. Neurol. Vol 44, 5: 445– 458, 1985.

    Article  PubMed  CAS  Google Scholar 

  85. Beck, D.W., Vinters, H.W., Hart, M.N. and Cancilla, P.A. Gial cells influence polarity of the blood-brain barrier. J. Neuropathol. Exp. Neurol. 43: 219–224, 1984.

    Article  PubMed  CAS  Google Scholar 

  86. DeJoseph, M.R. and Hawkins, R.A. Glucose consumption decreases throughout the brain only hours after portacaval shunting. Am. J. Physiol. In Press.

    Google Scholar 

  87. Mans, A.M., DeJoseph, M.R., Davis, D.W. and Hawkins, R. A. Regional amino acid transport into brain during diabetes: effect of plasma amino acids. Am. J. Physiol. 253: E575–E583, 1987.

    PubMed  CAS  Google Scholar 

  88. Freund, H., Dienstag, J., Lehrich, J., Yoshimura, N., Bradford, R.R., Rosen, H., Atamian, S., Slemmer, F., Holroyde, J. and Fischer, J.E. Infusion of branched-chain enriched amino acid solution in patients with hepatic encephalopathy. Ann. Surg. 196: 209–222, 1982.

    Article  PubMed  CAS  Google Scholar 

  89. Fischer, J.E. and Baldessarini, R.J. Pathogenesis and therapy of hepatic coma, in Progress in Liver Diseases, Vol. V: 363–397, Grune and Stratton, New York, 1976.

    Google Scholar 

  90. Kleinberger, G., Ferenci, P., Gassber, A., Lochs, H., Pall, H.and Pichler, M. Behandlung des Coma hepaticum durch vollstandige parenterale Ernahrung and L-Valin. Schweiz. Med. Wochenschr. 107: 1639, 1977.

    Google Scholar 

  91. Riederer, P., Jellinger, K., Kleinberger, G. and Weiser, M. Oral and parenteral nutrition with L-valine: Mode of action. Nutr. Metab. 24: 209–217, 1980.

    Article  PubMed  CAS  Google Scholar 

  92. Rossi-Fanelli, F., Angelico, M. , Cangiano, C., Cascino, A., Capocaccia, R., DeConciliis, D., Riggio, O. and Capocaccia, L. Effect of glucose and/or branched-chain amino acid infusion on plasma amino acid imbalance in chronic liver failure. J. Parenter. Enteral Nutr., 414– 419, 1981.

    Google Scholar 

  93. Eriksson, L.S., Persson, H. and Wahren, J. Branched-chain amino acids in the treatment of chronic hepatic encephalopathy. Gut 23: 801–806, 1982.

    Article  PubMed  CAS  Google Scholar 

  94. Wahren, J., Denis, J., Desurmont, P., Eriksson, L.S., Escoffier, J.M., Gauthier, A.P., Hagenfeldt, L., Michel, H., Opolon, P., Paris, J.C. and Veyrac, M. Is intravenous administration of branched-chain amino acids effective in the treatment of hepatic encephalopathy? A multicenter study. Hepatology 3: 475–480, 1983.

    Article  PubMed  CAS  Google Scholar 

  95. Freund, H., Yoshimura, N., and Fischer, J.E. Chronic hepatic encephalopathy. Long-term therapy with a branched-chain amino-acid-enriched elemental diet. JAMA 242: 347– 349, 1979.

    Article  PubMed  CAS  Google Scholar 

  96. Horst, D,. Grace, N.D., Conn. H.O., Schiff, E., Schenker, S., Viteri, A., Law, D. and Atterburg, C.E. Comparison of dietary protein with an oral, branched chain-enriched amino acid supplement in chronic portal-systemic encephalopathy: A randomized controlled trial. Hepatology 4: 279–287, 1984.

    Article  PubMed  CAS  Google Scholar 

  97. Egberts, W.H., Schomerus, H., Hamster, W. and Jurgens, P. Branched-chain amino acids in the treatment of latent portosystemic encephalopathy. A double-blind, placebo-controlled crossover study. Gastroenterology 88: 887–895, 1985.

    PubMed  CAS  Google Scholar 

  98. Sieg, A., Walker, S., Czygan, P., Gartner, U., Lanzinger-Rossnagel, G., Stiehl, A. and Kommerell, B. Branchedchain amino acid-enriched elemental diet in patients with cirrhosis of the liver. A double-blind crossover trial. Z. Gastroenterol. 21: 644–650, 1983.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Hawkins, R.A., Mans, A.M. (1990). Cerebral Function in Hepatic Encephalopathy. In: Grisolía, S., Felipo, V., Miñana, MD. (eds) Cirrhosis, Hepatic Encephalopathy, and Ammonium Toxicity. Advances in Experimental Medicine and Biology, vol 272. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5826-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5826-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5828-2

  • Online ISBN: 978-1-4684-5826-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics