Skip to main content

Part of the book series: Biochemistry of the Elements ((BOTE,volume 9A+B))

  • 162 Accesses

Abstract

The metabolism of halogenated hydrocarbons in vivo is initiated predominantly by two classes of enzymes—the cytochrome P-450-dependent monooxygenases and the glutathione S-transferases. These enzymes, in general, convert nonexcretable lipophilic compounds ultimately to hydrophilic metabolites that can be eliminated in urine and/or bile. For example, oxidative replacement of halogen with hydroxyl followed by glucuronide formation is a major pathway for detoxification and excretion. On the other hand, processes initiated by these enzymes are often responsible for conversion of a relatively harmless substrate into a more toxic or carcinogenic intermediate. Bioactivation of xenobiotics to toxic and/or carcinogenic metabolites has been the subject of extensive research and will be discussed in this chapter. The role of deiodinases in thyroid hormone function was discussed in some detail in Chapter 6. This will be reconsidered briefly in this chapter in the context of biodehalogenation mechanisms. Metabolism and detoxification of special classes of halogenated compounds (pesticides, TCDD, etc.) will also be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anders, M. W., and Pohl, L. R., 1985. Halogenated alkanes, in Bioactivation of Foreign Compounds ( M. W. Anders, ed.), Academic Press, Orlando, Florida, pp. 283–315.

    Google Scholar 

  • Anders, M. W., Elfarra, A. A., and Lash, L. H., 1987. Cellular effects of reactive intermediates: Nephrotoxicity of S-conjugates of amino acids, Arch. Toxicol. 60: 103–108.

    Article  PubMed  CAS  Google Scholar 

  • Anders, M. W., Lash, L., Dekant, W., Elfarra, A. A., and Dohn, D. R., 1988. Biosynthesis and biotransformation of glutathione S-conjugates to toxic metabolites, Crit. Rev. Toxicol. 18: 311–341.

    Article  PubMed  CAS  Google Scholar 

  • Artigas, F., Martinez, E. Camón, L. Gelpí, E., and Rodriguez-Farré, E., 1988. Brain metabolites of lindane and related isomers: Identification by negative ion mass spectrometry, Toxicology 49: 57–63.

    CAS  Google Scholar 

  • Baker, M. T., and Van Dyke, R. A., 1984. Metabolism-dependent binding of the chlorinated insecticide DDT and its metabolite, DDD, to microsomal protein and lipids, Biochem. Pharmacol. 33: 255–260.

    Article  PubMed  CAS  Google Scholar 

  • Banki, K., Elfarra, A. A., Lash, L. H., and Anders, M. W., 1986. Metabolism of S-(2-chloro1,1,2-trifluoroethyl)-L-cysteine to hydrogen sulfide and the role of hydrogen sulfide in S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine-induced mitochondria) toxicity, Biochem. Biophys. Res. Commun. 138: 707–713.

    Article  PubMed  CAS  Google Scholar 

  • Barbin, A., Laib, R. J., and Bartsch, H., 1985. Lack of miscoding properties of 7-(2-oxoethyl)guanine, the major vinyl chloride–DNA adduct, Cancer Res. 45: 2440–2444.

    PubMed  CAS  Google Scholar 

  • Bartsch, H., 1986. The role of cyclic nucleic acid base adducts in carcinogenesis and mutagenesis, in The Role of Cyclic Nucleic Acid Adducts in Carcinogenesis and Mutagenesis (B. Singer and H. Bartsch, eds.), IARC Scientific Publications, No. 70, Oxford University Press,.New York, pp. 3–14.

    Google Scholar 

  • Bickel, M. H., and Muehlebach, S., 1980. Pharmacokinetics and ecodisposition of polyhalogenated hydrocarbons: Aspects and concepts, Drug Metab. Rev. 11: 149–190.

    Article  PubMed  CAS  Google Scholar 

  • Bolt, H. M., 1988. Roles of etheno-DNA adducts in tumorigenicity of olefins, CRC Crit. Rev. Toxicol. 18: 299–309.

    Article  CAS  Google Scholar 

  • Brault, D., 1985. Model studies in cytochrome P-450-mediated toxicity of halogenated compounds: Radical processes involving iron porphyrins, Environ. Health Perspect 64: 53–60.

    Article  PubMed  CAS  Google Scholar 

  • Brimfield, A. A., and Street, J. C., 1979. Mammalian biotransformation of chlordane: In vivo and primary hepatic comparisons, Ann. N.Y. Acad. Sci. 320: 247–256.

    PubMed  CAS  Google Scholar 

  • Brooks, G. T., 1986. Insecticide metabolism and selective toxicity, Xenobiotica 16:989–1002. Burka, L. T., Thorsen, A., and Guengerich, F. P., 1980. Enzymatic monooxygenation of

    Google Scholar 

  • halogen atoms: Cytochrome P-450 catalyzed oxidation of iodobenzene by iodosobenzene, J. Am. Chem. Soc. 102: 7615–7616.

    Google Scholar 

  • Castellino, A. J., and Bruice, T. C., 1988. Intermediates in the epoxidation of alkenes by cytochrome P-450 models. 1. cis-Stilbene as a mechanistic probe, J. Am. Chem. Soc. 110: 158–162.

    Article  CAS  Google Scholar 

  • Chandurkar, P. S., and Matsumura, F., 1979. Metabolism of toxaphene components in rats, Arch. Environ. Contam. Toxicol. 8: 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Chang, R. L., Wood, A. W., Conney, A. H., Yagi, H. Sayer, J. M., Thakker, D. R., Jerina, D. M., and Levin, W., 1987. Role of diaxial versus diequatorial hydroxyl groups in the tumorigenic activity of a benzo[a]pyrene bay-region diol epoxide, Proc. Natl. Acad. Sci. USA 84: 8633–8636.

    Article  PubMed  CAS  Google Scholar 

  • Chasseaud, L. F., 1979. The role of glutathione and glutathione S-transferases in the metabolism of chemical carcinogens and other electrophilic agents, Adv. Cancer Res. 29: 175–274.

    Article  PubMed  CAS  Google Scholar 

  • Cheeseman, K. H., Albano, E. F., Tomasi, A., and Slater, T. F., 1985. Biochemical studies on the metabolic activation of halogenated alkanes, Environ. Health Perspect 64: 85–101.

    Article  PubMed  CAS  Google Scholar 

  • Collman, J. P., Brauman, J. I., Meunier, B., Hayashi, T., Kodaked, T., and Raybuck, S. A., 1985. Epoxidation of olefins by cytochrome P-450 model compounds. Kinetics and stereochemistry of oxygen atom transfer and origin of shape selectivity, J. Am. Chem. Soc. 107: 2000–2005.

    Article  CAS  Google Scholar 

  • Collman, J. P., Kodadek, T., and Brauman, J. I., 1986. Oxygenation of styrene by cytochrome P-450 model systems. A mechanistic study, J. Am. Chem. Soc. 108: 2588–2594.

    Article  CAS  Google Scholar 

  • Dekant, W., Lash, L. H., and Anders, M. W., 1987. Bioactivation mechanism of the cytotoxic and nephrotoxic S-conjugate S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine, Proc. Natl. Acad. Sci. USA 84: 7443–7447.

    Article  PubMed  CAS  Google Scholar 

  • Dohn, D. R., Garziano, M. J., and Casida, J. E., 1988. Metabolites of [3-’3C]1,2-dibromo-3chloropropane in male rats studied by 13C and ‘H-“C correlated two-dimensional NMR spectroscopy, Biochem. Pharmacol. 37: 3485–3495.

    Article  PubMed  CAS  Google Scholar 

  • Dolphin, D., Matsumoto, A., and Shortman, C., 1989. ß-Hydroxyalkyl a-metalloporphyrins: Models for epoxide and alkene generation from cytochrome P-450, J. Am. Chem. Soc. 111: 411–413.

    Article  CAS  Google Scholar 

  • Eder, E., Neudecker, T., Lutz, D., and Henschler, D., 1980. Mutagenic potential of allyl and allylic compounds. Structure-activity relationship as determined by alkylating and direct in vitro mutagenic properties, Biochem. Pharmacol. 29: 993–998.

    Article  PubMed  CAS  Google Scholar 

  • Elfarra, A. A., and Anders, M. W., 1987. Renal processing of glutathione conjugates. Role in nephrotoxicity, Biochem. Pharmacol. 33: 3729–3732.

    Article  Google Scholar 

  • Elfarra, A. A., Baggs, R. B., and Anders, M. W., 1985. Structure-nephrotoxicity relationships of S-(2-chloroethyl)-DL-cysteine and analogs: Role for an episulfonium ion, J. Pharmacol. Exp. Ther. 233: 512–516.

    PubMed  CAS  Google Scholar 

  • Elfarra, A. A., Lash, L. H., and Anders, M. W., 1987. a-Ketoacids stimulate rat renal cystein conjugate ß-Iyase activity and potentiate the cytotoxicity of S-(1,2-dichlorovinyl)-Lcystein, Mol. Pharmacol. 31: 208–212.

    Google Scholar 

  • Engler, D., and Burger, A. G., 1984. The deiodination of the iodothyronines and of their derivatives in man, Endocrine Rev. 5: 151–184.

    Article  CAS  Google Scholar 

  • Fariss, M. W., Blanke, R. V., Saady, J. J., and Guzelian, P. S., 1980. Demonstration of major metabolic pathways for chlordecone ( Kepone) in humans, Drug. Metab. Dispos. 8: 434–438.

    PubMed  CAS  Google Scholar 

  • Fawcett, S. C., King, L. J., Bunyan, P. J., and Stanley, P. I., 1987. The metabolism of 14C-DDT, 14C-DDD, ‘4C-DDE and ‘4C-DDMU in rats and Japanese quail, Xenobiotica 17: 525–538.

    Article  PubMed  CAS  Google Scholar 

  • Fitzloff, J. F., Portig, J., and Stein, K., 1982. Lindane metabolism by human and rat liver microsomes, Xenobiotica 12: 197–202.

    Article  PubMed  CAS  Google Scholar 

  • Fukami, J:I., 1980. Metabolism of several insecticides by glutathione S-transferase, Pharmacol. Ther. 10: 473–514.

    Google Scholar 

  • Gold, B., and Brunk, G., 1984. A mechanistic study of the metabolism of 1,1-dichloro2,2-bis(p-chlorophenyl)ethane (DDD) to 2,2-bis(p-chlorophenyl)acetic acid (DDA), Biochem. Pharmacol. 33: 979–982.

    Article  PubMed  CAS  Google Scholar 

  • Groves, J. T., McClusky, G. A., White, R. E., and Coon, M. J., 1978. Aliphatic hydroxylation of highly purified liver microsomal cytochrome P-450. Evidence for a carbon radical intermediate, Biochem. Biophys. Res. Commun. 81: 154–160.

    Article  PubMed  CAS  Google Scholar 

  • Groves, J. T., Avaria-Neisser, G. E., Fish, K. M., Imachi, M., and Kuczkowski, R. L., 1986. Hydrogen-deuterium exchange during propylene epoxidation by cytochrome P-450, J. Am. Chem. Soc. 108: 3837–3838.

    Article  CAS  Google Scholar 

  • Guengerich, F. P., 1982. Metabolism of vinyl halides: In vitro studies on roles of potential activated metabolites, Adv. Exp. Med. Biol. 136A - 136B: 685–692.

    Google Scholar 

  • Guengerich, F. P., and Macdonald, T. L., 1984. Chemical mechanism of catalysis by cytochrome P-450: A unified view, Acc. Chem. Res. 17: 9–16.

    Article  CAS  Google Scholar 

  • Guengerich, F. P., Crawford, W. M., Jr., Domoradzki, J. Y., Macdonald, T. L., and Watanabe, P. G., 1980. In vitro activation of 1,2-dichloroethane by microsomal and cytosolic enzymes, Toxicol. Appl. Pharmacol. 55: 303–317.

    CAS  Google Scholar 

  • Guengerich, F. P., Mason, P. S., Scott, W. T., Fox, T. R., and Watanabe, P. G., 1981. Roles of 2-haloethylene oxides and 2-haloacetaldehydes derived from vinyl bromide and vinyl chloride in irreversible binding to protein and DNA, Cancer Res. 41: 4391–4398.

    PubMed  CAS  Google Scholar 

  • Guengerich, F. P., Willard, R. J., Shea, J. P., Richards, L. E., and Macdonald, T. L., 1984. Mechanism-based inactivation of cytochrome P-450 by heteroatom-substituted cyclopropanes and formation of ring-opened compounds, J. Am. Chem. Soc. 106: 6446–6447.

    Article  CAS  Google Scholar 

  • Guengerich, F. P., Peterson, L. A., Cmarik, J. L., Koga, N., and Inskeep, P. G., 1987. Activation of dihaloalkanes by glutathione conjugation and formation of DNA adducts, Environ. Health Perspect 76: 15–18.

    Article  PubMed  CAS  Google Scholar 

  • Hecht, S. S., Amin, S., Melikian, A. A., LaVoie, E. J., and Hoffmann, D., 1985. Effects of methyl and fluorine substitution on the metabolic activation and tumorigenicity of polycyclic aromatic hydrocarbons, in Polycyclic Hydrocarbons and Carcinogenesis ( R. G. Harvey, ed.), American Chemical Society, Washington, D.C., pp. 85–105.

    Chapter  Google Scholar 

  • Henschler, D., 1985. Halogenated alkenes and alkynes, in Bioactivation of Foreign Compounds ( M. W. Anders, ed.), Academic Press, Orlando, Florida, pp. 317–437.

    Google Scholar 

  • Jerina, D. M., and Daly, J. W., 1976. Oxidation at carbon, in Drug Metabolism-From Microbes to Man ( D. V. Parke and R. L. Smith, eds.), Taylor and Francis, London, pp. 13–32.

    Google Scholar 

  • Keiner, M. J., McLenithan, J. C., and Anders, M. W., 1986. Thiol stimulation of the cytochrome P-450-dependent reduction of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) to 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD), Biochem. Pharmacol. 35: 1805–1807.

    Article  Google Scholar 

  • Kieczka, H., and Kappus, H., 1980. Oxygen dependence of CC14-induced lipid peroxidation in vitro and in vivo, Toxicol. Lett. 5: 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Koga, N., Inskeep, P. B., Harris, T. M., and Guengerich, F. P., 1986. S-[2-(N 7 Guanyl)ethyl]glutathione, the major DNA adduct formed from 1,2-dibromoethane, Biochemistry 25: 2192–2198.

    CAS  Google Scholar 

  • Lang, B., and Maier, P., 1986. Lipid peroxidation dependent aldrin epoxidation in liver microsomes, hepatocytes and granulation tissue cells, Biochem. Biophys. Res. Commun. 138: 24–32.

    Article  PubMed  CAS  Google Scholar 

  • Lang, B., Fred, K., and Maier, P., 1986. Prostaglanding synthase dependent aldrin epoxida- tion in hepatic and extrahepatic tissues of rats, Biochem. Pharmacol. 35: 3643–3645.

    Article  PubMed  CAS  Google Scholar 

  • Lau, S. S., and Monks, T. J., 1988. The contribution of bromobenzene to our current understanding of chemically-induced toxicities, Life Sci. 42: 1259–1269.

    Article  PubMed  CAS  Google Scholar 

  • Lehr, R. E., Kumar, S., Levin, W., Wood, A. W., Chang, R. L., Conney, A. H., Yagi, H., Sayer, J. M., and Jerina, D. M., 1985. The bay region theory of polycyclic aromatic hydrocarbon carcinogenesis, in Polycyclic Hydrocarbons and Carcinogenesis ( R. G. Harvey, ed.), American Chemical Society, Washington, D.C., pp. 63–84.

    Chapter  Google Scholar 

  • Lowrey, K., Glende, E. A., Jr., and Recknagel, R. 0., 1981. Destruction of liver microsomal calcium pump activity by carbon tetrachloride and bromotrichloromethane, Biochem. Pharmacol. 30: 135–140.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald, T. L., 1984. Chemical mechanisms of halocarbon metabolism, Crit. Rev. Toxicol. 11: 85–120.

    Article  Google Scholar 

  • Macdonald, T. L., Narasimhan, N., and Burka, L. T., 1980. Chemical and biological oxidation of organohalides. Peracid oxidation of alkyl iodides, J. Am. Chem. Soc. 102: 7760–7765.

    Article  CAS  Google Scholar 

  • Matsumura, F., 1975. Toxicology of Insecticides, Plenum Press, New York, pp. 165–251.

    Book  Google Scholar 

  • Mead, R. J., Moulden, D. L., and Twigg, L. E., 1985. Significance of sulfhydryl compounds in the manifestation of fluoroacetate toxicity to rat, brush-tailed possum, woylie and western grey kangaroo, Aust. J. Biol. Sci. 38: 139–149.

    PubMed  CAS  Google Scholar 

  • Moore, L., Davenport, G. R., and Landon, E. J., 1976. Calcium uptake of a rat liver microsomal subcellular fraction in response to in vitro administration of carbon tetrachloride, J. Biol. Chem. 251: 1197–1201.

    PubMed  CAS  Google Scholar 

  • Morgenstern, R., Guthenberg, C., and DePierre, J. W., 1982. Microsomal glutathione S-transferase. Purification, initial characterization and demonstration that it is not identical to the cytosolic glutathione S-transferases A, B, and C, Eur. J. Biochem. 128: 243–248.

    Article  PubMed  CAS  Google Scholar 

  • Neal, R., Gasiewicz, T., Geiger, L., Olson, J., and Sawahata, T., 1984. Metabolism of 2,3,7,8tetrachlorodibenzo-p-dioxin in mammalian systems, in Banbury Report 18. Biological Mechanisms of Dioxin Action (A. Poland and R. D. Kimbrough, eds.), Cold Spring Harbor Laboratory, pp. 49–60.

    Google Scholar 

  • Nebert, D. W., Eisen, H. J., Negishi, M., Lang, M. A., Hjelmeland, L. M., and Okey, A. B., 1981. Genetic mechanisms controlling the induction of polysubstrate monooxygenase (P-450) activities, Annu. Rev. Pharmacol. Toxicol. 21: 431–462.

    Article  PubMed  CAS  Google Scholar 

  • Neidleman, S. L., and Geigert, J., 1986. Biohalogenation: Principles, Basic Roles and Application, Ellis Horwood, Chichester, pp. 156–175.

    Google Scholar 

  • Ortiz de Montellano, P. R., Mangold, B. L. K., Wheeler, C., Kunze, K. L., and Reich, N. O., 1983. Stereochemistry of cytochrome P-450-catalyzed epoxidation and prosthetic heme alkylation, J. Biol. Chem. 258: 4208–4213.

    Google Scholar 

  • Ozawa, N., and Guengerich, F. P., 1983. Evidence for the formation of an S-[2-(N 7 guanyl)ethyl]glutathione adduct in glutathione-mediated binding of the carcinogen 1,2dibromoethane to DNA, Proc. Natl. Acad. Sci. USA 80: 5266–5270.

    Article  PubMed  CAS  Google Scholar 

  • Poiger, H., and Buser, H.-R., 1984. The metabolism of TCDD in the dog and rat, in Banbury Report 18. Biological Mechanisms of Dioxin Action ( A. Poland and R. D. Kimbrough, eds.), ( A. Poland and R. D. Kimbrough, eds. ), Cold Spring Harbor Laboratory, pp. 39–47.

    Google Scholar 

  • Quensen, J. F., III, Tiedje, J. M., and Boyd, S. A., 1988. Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments, Science 242: 752–754.

    Article  PubMed  CAS  Google Scholar 

  • Quraishi, M. S., 1977. Biochemical Insect Control, Its Impact on Economy, Environment, and Natural Selection, John Wiley and Sons, New York, pp. 98–123.

    Google Scholar 

  • Saleh, M. A., and Casida, J. E., 1978. Reductive dechlorination of the toxaphene component 2,2,5-endo,6-exo,8,9,10-heptachlorobornane in various chemical, photochemical, and metabolic systems, J. Agric. Food Chem. 26: 583–590.

    Article  CAS  Google Scholar 

  • Scherer, E., Van Der Laken, C. J. Gwinner, L. M. Laib, R. J., and Emmelot, P., 1981. Modification of deoxyguanosine by chloroethylene oxide, Carcinogenesis 2: 671–677.

    Article  PubMed  CAS  Google Scholar 

  • Selander, H. G., Jerina, D. M., and Daly, J. W., 1975. Metabolism of chlorobenzene with hepatic microsomes and solubilized cytochrome P-450 systems, Arch. Biochem. Biophys. 168: 309–321.

    Article  PubMed  CAS  Google Scholar 

  • Singer, B., Spengler, S. J., Chavez, F., and Kusmierek, J. T., 1987. The vinyl chloride-derived nucleoside, N2,3-ethenoguanosine, is a highly efficient mutagen in transcription, Carcinogenesis 8: 745–747.

    Article  PubMed  CAS  Google Scholar 

  • Slater, T. F., Cheeseman, K. H., and Ingold, K. U., 1985. Carbon tetrachloride toxicity as a model for studying free-radical mediated liver injury, Philos. Trans. Roy. Soc. London B 311: 633–645.

    Article  CAS  Google Scholar 

  • Soiefer, A. I., and Kostyniak, P. J., 1984. Purification of a fluoroacetate-specific defluorinase from mouse liver cytosol, J. Biol. Chem. 259: 10787–10792.

    PubMed  CAS  Google Scholar 

  • Stacey, N., and Priestly, B. G., 1978. Lipid peroxidation in isolated rat hepatocytes: Relationship to toxicity of CC14, ADP/Fe3+, and diethyl maleate, Toxicol. Appl. Pharmacol. 45: 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, J. L., Ratnayaka, J. H., and Anders, M. W., 1980. Metabolism of dihalomethanes to carbon monoxide. IV. Studies in isolated rat hepatocytes, Toxicol. Appl. Pharmacol. 55: 484–489.

    Article  PubMed  CAS  Google Scholar 

  • Suflita, J. M., Horowitz, A., Shelton, D. R., and Tiedje, J. M., 1982. Dehalogenation: A novel pathway for the anaerobic biodegradation of haloaromatic compounds, Science 218: 1115–1117.

    Article  PubMed  CAS  Google Scholar 

  • Tachikzawa, H., MacDonald, T. L., and Neal, R. A., 1982. Rat liver microsomal metabolism of propyl halides, Mol. Pharmacol. 22: 745–751.

    Google Scholar 

  • Vadi, H. V., Schasteen, C. S., and Reed, D. J., 1985. Interactions of S-(2-haloethyl)mercapturic acid analogs with plasmid DNA, Toxicol. Appl. Pharmacol. 80: 386–396.

    Article  PubMed  CAS  Google Scholar 

  • Vainio, H., and Saracci, R., 1984. Carcinogenicity of selected vinyl compounds, some aldehydes, haloethyl nitrosoureas and furocoumarins: An overview, in The Role of Cyclic Nucleic Acid Adducts in Carcinogenesis and Mutagenesis (B. Singer and H. Bartsch, eds.), IARC Scientific Publications, No. 70, Oxford University Press, New York, pp. 15–29.

    Google Scholar 

  • van Bladeren, P. J., Breimer, D. D., van Huijgevoort, J. A. T. C. M., Vermeuien, N. P. E., and van der Gen, A., 1981. The metabolic formation of N-acetyl-S-2-hydroxy-t-cysteine from tetradeutero-1,2-dibromoethane. Relative importance of oxidation and glutathione conjugation in vivo, Biochem. Pharmacol. 30: 2499–2502.

    Article  PubMed  Google Scholar 

  • Webb, W. W., Elfarra, A. A., Webster, K. D., Thom, R. E., and Anders, M. W., 1987. Role for an episulfonium ion in S-(2-chloroethyl)-DL-cysteine-induced cytotoxicity and its reactions with glutathione, Biochemistry 26: 3017–3023.

    Article  PubMed  CAS  Google Scholar 

  • White, R. E., and Coon, M. J., 1980. Oxygen activation by cytochrome P-450, Annu. Rev. Biochem. 49: 315–356.

    Article  PubMed  CAS  Google Scholar 

  • Younes, M., and Siegers, C.-P., 1984. Interrelation between lipid peroxidation and other hepatotoxic events, Biochem. Pharmacol. 33: 3001–2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Kirk, K.L. (1991). Metabolism of Halogenated Compounds—Biodehalogenation. In: Biochemistry of the Elemental Halogens and Inorganic Halides. Biochemistry of the Elements, vol 9A+B. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5817-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5817-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5819-0

  • Online ISBN: 978-1-4684-5817-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics