Skip to main content

Iodotyrosine, Iodothyronines, and Thyroid Function

  • Chapter
  • 144 Accesses

Part of the book series: Biochemistry of the Elements ((BOTE,volume 9A+B))

Abstract

Several methods are available for the facile radioiodination of tyrosine residues in peptides and proteins. Applications of radioiodinated macromolecules in such areas as receptor biochemistry, immunology, transport phenomena, and metabolic studies are now routine. References for methodology and applications are given in the review by Alexander (1984).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, N. M., 1984. Iodine, in Biochemistry of the Essential Ultratrace Elements ( E. Frieden, ed.), Plenum Press, New York, pp. 33–53.

    Chapter  Google Scholar 

  • Balsam, A., Sexton, F., Borges, M., and Ingbar, S. H., 1983. Formation of diiodotyrosine from thyroxine. Ether-link cleavage, an alternate pathway of thyroxine metabolism, J. Clin. Invest. 72: 1234–1245.

    Article  PubMed  CAS  Google Scholar 

  • Barlow, J. W., and De Nayer, P., 1988. Characterization of thyroid hormone receptors in human IM-9 lymphocytes, Acta Endocrinol. 117: 327–332.

    PubMed  CAS  Google Scholar 

  • Barlow, J. W., Voz, M. L. J., Eliard, P. H., Mathy-Hartert, M., De Nayer, P., Economidis, I. V., Belayew, A., Martial, J. A., and Rousseau, G. G., 1986. Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes, Proc. Natl. Acad. Sci. USA 83: 9021–9025.

    Article  PubMed  CAS  Google Scholar 

  • Blondeau, J.-P., Osty, J., and Francon, J., 1988. Characterization of the thyroid hormone transport system of isolated hepatocytes, J. Biol. Chem. 263: 2685–2692.

    PubMed  CAS  Google Scholar 

  • Braverman, L. E., Ingbar, S. H., and Sterling, K., 1970. Conversion of thyroxine (T4) to triiodothyronine (T3) in athyreotic human subjects, J. Clin. Invest. 49: 855–864.

    Article  PubMed  CAS  Google Scholar 

  • Chae, K., and McKinney, J. D., 1988. Molecular complexes of thyroid hormone tyrosyl rings with aromatic donors. Possible relationship to receptor protein interactions, J. Med. Chem. 31: 357–362.

    Article  PubMed  CAS  Google Scholar 

  • Cody, V., Meyer, T., Dohler, K. D., Hesch, R. D., Rokos, H., and Marko, M., 1984. Molecular structure and biochemical activity of 3,5,3’-triiodothyronamine, Endocrine Res. 10: 91–99.

    Article  CAS  Google Scholar 

  • Davidson, B., Neary, J. T., Strout, H. V., Maloof, F., and Soodak, M., 1978. Evidence for a thyroid peroxidase associated “active iodine” species, Biochim. Biophys. Acta 522: 318–326.

    PubMed  CAS  Google Scholar 

  • Deme, D., Pommier, J., and Nunez, J., 1978. Specificity of thyroid hormone synthesis. The role of thyroid peroxidase, Biochim. Biophys. Acta 540: 73–82.

    Article  PubMed  CAS  Google Scholar 

  • De Nayer, P., 1987. Thyroid hormone action at the cellular level, Horm. Res. 26: 48–57.

    Article  PubMed  Google Scholar 

  • Di Lauro, R., Obici, S., Condliffe, D., Ursini, V. M., Musti, A., Moscatelli, C., and Avvedimento, V. E., 1985. The sequence of 967 amino acids at the carboxyl end of rat thyroglobulin. Location and surroundings of two thyroxine-forming sites, Eur. J. Biochem. 148: 7–11.

    Article  PubMed  Google Scholar 

  • Dratman, M. B., 1974. On the mechanism of action of thyroxine, an amino acid analog of tyrosine, J. Theor. Biol. 46: 255–270.

    Article  PubMed  CAS  Google Scholar 

  • Dratman, M. B., Crutchfield, F. L., Axelrod, J., Colburn, R. W., and Thoa, N., 1976. Localization of triiodothyronine in nerve ending fractions of rat brain, Proc. Natl. Acad. Sci. USA 73: 941–944.

    Article  PubMed  CAS  Google Scholar 

  • Engler, D., and Burger, A. G., 1984. The deiodination of the iodothyronines and of their derivatives in man, Endocrine Rev. 5: 151–184.

    Article  CAS  Google Scholar 

  • Formisano, S., Moscatelli, C., Zarrilli, R., Di Ieso, B., Acquaviva, R., Obici, S., Palumbo, G., and Di Lauro, R., 1985. Prediction of the secondary structure of the carboxy-terminal third of rat thyroglobulin, Biochem. Biophys. Res. Commun. 133: 766–772.

    Article  PubMed  CAS  Google Scholar 

  • Frieden, E., 1981. Iodine and the thyroid hormones, Trends Biochem. Sci. 6: 50–53.

    Article  CAS  Google Scholar 

  • Garavet, J.-M., Nunez, J., and Cahnmann, H. J., 1980. Formation of dehydroalanine residues during thyroid hormone synthesis in thyroglobulin, J. Biol. Chem. 255: 5281–5285.

    Google Scholar 

  • Garavet, J.-M., Cahnmann, H. J., and Nunez, J., 1981. Thyroid hormone synthesis in thyroglobulin. The mechanism of the coupling reaction, J. Biol. Chem. 256: 9167–9173.

    Google Scholar 

  • Gordon, J. T., Dratman, M. B., and Wassell, M. S., 1985. Isolation, characterization and structure elucidation of a new urinary thyroid hormone metabolite whose in vivo production requires side chain decarboxylation and ß-hydroxylation, Annual Meeting of the Endocrine Society, Baltimore, p. 21 (Abstract 847).

    Google Scholar 

  • Gross, G., 1986. Effect of thyroid hormones on myocardial adrenoceptors and adrenoceptormediated cardiovascular responses in the rat, in New Aspects of the Role of Adrenoceptors in the Cardiovascular System ( H. Grobecker, A. Philips, and K. Starke, eds.), Springer-Verlag, Berlin, pp. 121–128.

    Chapter  Google Scholar 

  • Han, S.-Y., Gordon, J. T., Bhat, K., Dratman, M. T., and Joullie, M. M., 1987. Synthesis of side chain-modified iodothyronines, lit. J. Pept. Protein Res. 30: 652–661.

    Article  CAS  Google Scholar 

  • Iriuchijima, T., Rogers, D., and Wilber, J. F., 1985. TSH secretory regulation: New evidence that triiodothyronine (T3) and thyroxine (T4) can inhibit TRH secretion both in vivo and in vitro, in Frontiers in Thyroidology, Vol. 1 ( G. Medeiros-Neto and E. Gaiton, eds.), Plenum Medical Book Co., New York, pp. 233–236.

    Google Scholar 

  • Jorgensen, E. C., 1981. Thyromimetic and antithyroid drugs, in Burger’s Medicinal Chemistry, Part III, 4th ed. ( M. E. Wolff, ed.), John Wiley and Sons, New York, pp. 103–145.

    Google Scholar 

  • Kannan, C. R., 1987. The Pituitary Gland, Plenum Medical Book Co., New York, pp. 145–169.

    Book  Google Scholar 

  • Kaplan, M. M., 1984. The role of thyroid hrmone deiodination in the regulation of hypothalamo-pituitary function, Neuroendocrinology 38: 254–260.

    Article  PubMed  CAS  Google Scholar 

  • Köhrle, J., Brabant, G., and Hesch, R.-D., 1987. Metabolism of the thyroid hormones, Horm. Res. 26: 58–78.

    Article  PubMed  Google Scholar 

  • Lamas, L., Anderson, P. C., Fox, J. W., and Dunn, J. T., 1989. Consensus sequences for early iodination and hormonogenesis in human thyroglobulin, J. Biol. Chem. 264: 13541–13545.

    PubMed  CAS  Google Scholar 

  • Larsen, P. R., and Silva, J. E., 1983. Intrapituitary mechanisms in the control of TSH secretion, in Molecular Basis of Thyroid Hormone Action (J. H. Oppenheimer and H. H. Samuels, eds.), Academic Press, New York, pp. 352–385.

    Google Scholar 

  • Malthiery, Y., and Lissitzky, S., 1985. Sequence of the 5’-end quarter of the humanthyroglobulin messenger ribonucleic acid and of its deduced amino-acid sequence, Eur. J. Biochem. 147: 53–58.

    Article  PubMed  CAS  Google Scholar 

  • Malthiery, Y., and Lissitzky, S., 1987. Primary structure of human thyroglobulin deduced from the sequence of its 8448-base complementary DNA, Eur. J. Biochem. 165: 491–498.

    Article  PubMed  CAS  Google Scholar 

  • Marriq, C., Lejeune, P.-J., Venot, N., Rolland, M., and Lissitzky, S., 1986. Characterization of a hormonogenic domain from human thyroglobulin, FEBS Lett. 207: 302–306.

    Article  PubMed  CAS  Google Scholar 

  • Mercken, L., Simons, M.-J., Swillins, S., Massaer, M., and Vassart, G., 1985. Primary structure of bovine thyroglobulin deduced from the sequence of its 8,431-base complementary DNA, Nature 316: 647–651.

    Article  PubMed  CAS  Google Scholar 

  • Mooradian, A. D., Schwartz, H. L., Mariash, C. N., and Oppenheimer, J. H., 1985. Trans-cellular and transnuclear transport of 3,5,3’-triiodothyronine in isolated hepatocytes, Endocrinology 117: 2449–2456.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, M., Yamazaki, I., Nakagawa, H., Ohtaki, S., and Ui, N., 1984. Iodination and oxidation of thyroglobulin catalyzed by thyroid peroxidase, J. Biol. Chem. 259: 359–364.

    PubMed  CAS  Google Scholar 

  • Neary, J. T., Soodak, M., and Maloof, F., 1984. Iodination by thyroid peroxidase, Methods Enzymol. 107: 445–475.

    Article  PubMed  CAS  Google Scholar 

  • Nunez, J., 1984. Thyroid hormones: Mechanism of phenoxy ether formation, Methods Enzymol. 107: 476–488.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer, J. H., 1979. Thyroid hormone action at the cellular level, Science 203: 971–979.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer, J. H., and Schwartz, H. L., 1985. Stereospecific transport of triiodothyronine from plasma to cytosol and from cytosol to nucleus in rat liver, kidney, brain, and heart, J. Clin. Invest. 75: 147–154.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer, J. H., Koerner, D., Schwartz, H. L., and Surks, M. I., 1972. Specific nuclear triiodothyronine binding sites in rat liver and kidney, J. Clin. Endocrin. Metab. 35: 330–333.

    Article  CAS  Google Scholar 

  • Palumbo, G., 1987. Thyroid hormonogenesis. Identification of a sequence containing iodophenyl donor site(s) in calf thyroglobulin, J. Biol. Chem. 262: 17182–17188.

    PubMed  CAS  Google Scholar 

  • Sap, J., Munoz, A., Damm, K., Goldberg, Y., Ghysdael, J., Leutz, A., Beug, H., and Vennström, B., 1986. The cerb A protein is a high-affinity receptor for thyroid hormone, Nature 324: 635–640.

    Article  PubMed  CAS  Google Scholar 

  • Segal, J., and Ingbar, S. H., 1984. An immediate increase in calcium accumulation by rat thymocytes induced by triiodothyronine: Its role in the subsequent metabolic response, Endocrinology 115: 160–166.

    Article  PubMed  CAS  Google Scholar 

  • Sterling, K., 1986. The molecular mechanism of thyroid hormone action at the cellular level, in The Thyroid Gland ( L. van Middlesworth, ed.), Year Book Medical Publishers, Chicago, pp. 203–229.

    Google Scholar 

  • Weinberger, C., Thompson, C. C., Ong, E. S., Lebo, R., Gruol, D. J., and Evans, R. M., 1986. The c-erb-A gene encodes a thyroid hormone receptor, Nature 324: 641–646.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Kirk, K.L. (1991). Iodotyrosine, Iodothyronines, and Thyroid Function. In: Biochemistry of the Elemental Halogens and Inorganic Halides. Biochemistry of the Elements, vol 9A+B. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5817-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5817-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5819-0

  • Online ISBN: 978-1-4684-5817-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics