Skip to main content

Part of the book series: Biochemistry of the Elements ((BOTE,volume 9A+B))

Abstract

Bromine is recognized as the most abundant and ubiquitous of trace elements. Despite this, essential roles in plants, microorganisms, or animals have been difficult to demonstrate (Nielsen, 1986). Early interest in the biochemistry of bromide (Br) stemmed from the use of bromides as sedatives and anticonvulsants, a use introduced in 1857. Toxicity associated with Br ingestion through use of over-the-counter bromine-containing drugs—a medical problem that, though rare, still persists—and the recognition of the presence of increased concentrations of Br in food and water due to the use of brominated pesticides and postharvest fumigants are among factors that have caused interest in the biochemistry, pharmacology, and toxicology of Br to be maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, R. C., Stjernholm, R. L., and Steele, R. H., 1972. Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity, Biochim. Biophys. Res. Commun. 47: 679–684.

    Article  CAS  Google Scholar 

  • Baba, A., Nishiuchi, Y., Uemura, A., and Iwata, H., 1988. Mechanism of excitatory amino acid-induced accumulation of cyclic AMP in hippocampal slices: Role of extracellular chloride, J. Pharmacol. Exp. Ther. 245: 299–304.

    PubMed  CAS  Google Scholar 

  • Berglindh, T., 1977. Absolute dependence on chloride for acid secretion in isolated gastric glands, Gastroenterology 73: 874–880.

    PubMed  CAS  Google Scholar 

  • Bowen, H. J. M., 1966. Trace Elements ir!_Bioehemistry,-Academic Press, London, p. 76.

    Google Scholar 

  • Ca-bantchik, Z. I.,Knauf, P. A., and Rothstein, A., 1978. The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of “probes,” Biochim. Biophys. Acta 515:239–302.

    Google Scholar 

  • Cheek, D. B., 1961. Extracellular volume; its structure and measurement and the influence of age and disease, J. Pediatr. 58: 103–125.

    Article  PubMed  CAS  Google Scholar 

  • Damoder, R., Klimov, V. V., and Dimukes, G. C., 1986. The effect of Cl-depletion and X–reconstitution on the oxygen-evolution rate, the yield of the multiline manganese EPR signal and EPR signal II in isolated photosystem-II complex, Biochim. Biophys. Acta 848: 378–391.

    Article  PubMed  CAS  Google Scholar 

  • Fong, P., Illsley, N. P., Widdecombe, J. H., and Verkman, A. S., 1988. Chloride transport in apical membrane vesicles from bovine tracheal epithelium: Characterization using a fluorescent indicator, J. Membr. Biol. 104: 233–239.

    Article  PubMed  CAS  Google Scholar 

  • Foote, C. S., Abakerli, R. B., Clough, R. L., and Lehrer, R. I., 1981. On the question of singlet oxygen production in polymorphonuclear leukocytes, in Bioluminescence and Chemiluminescence ( M. A. DeLuca and W. D. McElroy, eds.), Academic Press, New York, pp. 81–88.

    Google Scholar 

  • Frizzell, R. A., 1987. Cystic fibrosis: A disease of ion channels? Trends Neurosci. 10: 190–193.

    Article  CAS  Google Scholar 

  • Gleich, G. J., and Loegering, D. A., 1984. Immunology of eosinophils, Annu. Rev. Immunol. 2: 429–459.

    Article  PubMed  CAS  Google Scholar 

  • Halm, D. R., Rechkemmer, G., Schoumacher, R. A., and Frizzell, R. A., 1988a. Apical membrane chloride channels in a colonic cell line activated by secretory agonists, Am. J. Physiol. 254: C505–0511.

    PubMed  CAS  Google Scholar 

  • Halm, D. R., Rechkemmer, G. R., Schoumacher, R. A., and Frizzell, R. A., 1988b. Biophysical properties of a chloride channel in the apical membrane of a secretory epithelial cell, Comp. Biochem. Physiol. 90A: 597–601.

    Article  CAS  Google Scholar 

  • Harrison, J. E., Watson, B. D., and Schultz, J., 1978. Myeloperoxidase and singlet oxygen: A reappraisal, FEBS Lett. 92: 327–332.

    Article  PubMed  CAS  Google Scholar 

  • Hellerstein, S., Kaiser, C., Des Darrow, D., and Darrow, D. C., 1960. The distribution of bromide and chloride in the body, J. Clin. Invest. 39: 282–287.

    Article  PubMed  CAS  Google Scholar 

  • Higashijima, T., Ferguson, K. M., and Sternweis, P. C., 1987. Regulation of hormone-sensitive GTP-dependent regulatory proteins by chloride, J. Biol. Chem. 262: 3597–3602.

    PubMed  CAS  Google Scholar 

  • Kanofsky, J. R., and Tauber, A. I., 1983. Non-physiologic production of singlet oxygen by human neutrophils and by myeloperoxidase-H2O2-halide system, Blood 62: 82a.

    Google Scholar 

  • Kanofsky, J. R., Wright, J., Miles-Richardson, G. E., and Tauber, A. I., 1984. Biochemical requirements for singlet oxygen production by purified human myeloperoxidase, J. Clin. Invest. 74: 1489–1495.

    Article  PubMed  CAS  Google Scholar 

  • Kanofsky, J. R., Hoogland, H., Weyer, R., and Weis, S. J., 1988. Singlet oxygen production by human eosinophils, J. Biol. Chem. 263: 9692–9696.

    PubMed  CAS  Google Scholar 

  • Kolb, L., and Himmelsbach, C. K., 1938. Clinical studies of drug addiction, III. A critical review of the withdrawal treatments with method of evaluating abstinence syndromes, Am. J. Psych. 94: 759–799.

    Google Scholar 

  • Levitzki, A., and Steer, M. L., 1974. The allosteric activation of mammalian a-amylase by chloride, Eur. J. Biochem. 41: 171–180.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, J. H., Solano, F., Penafiel, R., Galindo, J. D., Iborra, J. L., and Lozano, J. A., 1986. Comparative study of tyrosinases from different sources: Relationship between halide inhibition and the enzyme active site, Comp. Biochem. Physiol. 83B: 633–636.

    CAS  Google Scholar 

  • Marvizón, J. C. G., and Skolnick, P., 1988. Enhancement of t-[’SS]butylbicyclophosphorothionate and [3H]strychnine binding by monovalent anions reveals similarities between y-aminobutyric acid-and glycine-gated chloride channels, J. Neurochem. 50: 1632–1639.

    Article  PubMed  Google Scholar 

  • Mason, M. F., 1936. Halide distribution in body fluids in chronic bromide intoxication, J. Biol. Chem. 113: 61–74.

    CAS  Google Scholar 

  • McRoberts, J. A., Erlinger, S., Rindler, M. J., and Saier, M. H., Jr., 1982. Furosemide-sensitive salt transport in the Madin-Darby canine kidney cell line. Evidence for the cotransport of Na +, K +, and Cl -, J. Biol. Chem. 257: 2260–2266.

    PubMed  CAS  Google Scholar 

  • Mendelsohn, W. B., 1980. The Use and Misues of Sleeping Pills. A Clinical Guide, Plenum, New York, p. 156.

    Google Scholar 

  • Montoya, G. A., and Riker, W. K., 1982. A study of the actions of bromide ion on frog sympathetic ganglion, Neuropharmacology 21: 581–585.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, F. H., 1986. Other elements: Sb, Ba, B, Br, Cs, Ge, Rb, Ag, Sr, Sn, Ti, Zr. Be, Bi, Ga, Au, In, Nb, Sc, Te, TI, W, in Trace Elements in Human and Animal Nutrition, Vol. II (W. Mertz, ed.), 5th ed., Academic Press, Orlando, Florida, pp. 415–463.

    Google Scholar 

  • O’Grady, S. M., Palfrey, H. C., and Field, M., 1987. Characteristics and functions of Na-K-Cl cotransport in epithelial tissues, Am. J. Physiol. 253: C177 - C192.

    PubMed  Google Scholar 

  • Ono, T.-A., Nakayama, H, Gleiter, H., Inoue, Y., and Kawamori, A., 1987. Modification of the properties of S2 state in photosynthetic 02-evolving center by replacement of chloride with other anions, Arch. Biochem. Biophys. 256: 618–624.

    Article  PubMed  CAS  Google Scholar 

  • Palfrey, H. C., and Greengard, P., 1981. Hormone-sensitive ion transport systems in erythrocytes as models for epithelial ion pathways, Ann. N.Y. Acad. Sci. 372: 291–308.

    Article  PubMed  CAS  Google Scholar 

  • Rauws, A. G., 1983. Pharmacokineticsof bromide ion-an overview, Food Chem. Toxicol. wan Leeuwen, F. X. R., and Sangster, B., 1987. The toxicology of bromide ion, CRC Crit. Rev. Toxicol. 18: 189 213.

    Google Scholar 

  • Leeuwen, F. X. R., den Tonkelaar, E. M., and van Logten, M. J., 1983. Toxicity of sodium bromide in rats: Effect on endocrine system and reproduction, Food Chem Toxicol. 21: 383–389.

    Article  PubMed  Google Scholar 

  • Leeuwen, F. X. R., Hanemaaijer, R., and Loeber, J. G., 1988. The effect of sodium bromide on thyroid function, Toxicology, Suppl. 12: 93–97.

    Google Scholar 

  • Logten, M. J., Wolthuis, M., Rauws, A. G., Kroes, R., den Tonkelaar, E. M., Berkvens, H., and van Esch, G. J., 1974. Semichronic toxicity study of sodium bromide in rats, Toxicology 2: 257–267.

    Article  PubMed  Google Scholar 

  • Versieck, J., and Cornelis, R., 1989. Trace Elements in Human Plasma or Serum, CRC Press, Boca Raton, Florida, pp. 76–78, 168–169.

    Google Scholar 

  • Weiss, S. J., Test, S. T., Eckmann, C. M., Roos, D., and Regiani, S., 1986. Brominating oxidants generated by human eosinophils, Science 234: 200–203.

    Article  PubMed  CAS  Google Scholar 

  • Woodbury, D. M., and Pippenger, C. E., 1982. Bromides, in Antiepileptic Drugs ( D. M. Woodbury, J. K. Penry, and C. E. Pippenger, eds.), Raven Press, New York, pp. 791–801.

    Google Scholar 

  • Wright, E. M., and Diamond, J. M., 1977. Anion selectivity in biological systems, Phys. Rev. 57: 109–156.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Kirk, K.L. (1991). Biochemistry of Inorganic Bromide. In: Biochemistry of the Elemental Halogens and Inorganic Halides. Biochemistry of the Elements, vol 9A+B. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5817-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5817-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5819-0

  • Online ISBN: 978-1-4684-5817-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics