Skip to main content

Part of the book series: Basic Life Sciences ((BLSC,volume 54))

Abstract

At Harwell, we have progressed from designing, building, and using small-diameter beams of epithermal neutrons for radiobiology studies to designing a radiotherapy facility for the 25-MW research reactor DIDO. The program is well into the survey phase, where the main emphasis is on tailoring the neutron spectrum. The incorporation of titanium and vanadium in an aluminium spectrum shaper in the D2O reflector has been shown to yield a significant reduction in the mean energy of neutrons incident on the patient by suppression of streaming through the cross-section window in aluminium at 25 keV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Constantine, L. J. Baker, P. G. F. Moore, and N. P. Taylor, “The Depth Enhanced Neutron Intense Source (DENIS),” in Proc. Second Int. Symp. on Neutron Capture Therapy Tokyo, 1985, H. Hatanaka, ed., Nishimura Co., Ltd., Niigata, Japan, p. 208 (1986).

    Google Scholar 

  2. G. Constantine, J. A. B. Gibson, K. G. Harrison, and P. Schofield, “Harwell Research on Beams for Neutron Capture Therapy,” Strahlenther. Onkol. 165(2/3):92 (1989).

    Google Scholar 

  3. G. Constantine, L. J. Baker, and N. P. Taylor, “Improved Methods for the Generation of 24.5 keV Neutron Beams with Possible Application to Boron Neutron Capture Therapy,” Nucl. Inst. Meth. A250:565 (1986).

    Google Scholar 

  4. G. R. Morgan, A. J. Mill, C. J. Roberts, S. Newman, and P. D. Holt, “The Radiobiology of 24 keV Neutrons,” Brit. J. Radiol. 61:1127 (1988).

    Google Scholar 

  5. J. F. Briesmeister, ed., “MCNP — A General Monte Carlo Code for Neutron and Photon Transport, Version 3A,” Los Alamos National Laboratory, LA-7396-M Rev. 2 (1986).

    Google Scholar 

  6. V. McLean, C. L. Dunford, and P. F. Rose, “Neutron Cross-Section Curves for Z=1–100,” in Neutron Cross Sections Vol. 2, Academic Press, Boston (1988).

    Google Scholar 

  7. G. Constantine, G. R. Morgan, and N. P. Taylor, “Progress toward Boron Neutron Capture Therapy at Harwell,” in Proc. Int. Symp. Utilisation of Research Reactors Grenoble, IAEA-SM-300/74 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Constantine, G. (1990). Neutron Capture Therapy Beam Design at Harwell. In: Harling, O.K., Bernard, J.A., Zamenhof, R.G. (eds) Neutron Beam Design, Development, and Performance for Neutron Capture Therapy. Basic Life Sciences, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5802-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5802-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5804-6

  • Online ISBN: 978-1-4684-5802-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics