Regulation of the Sympathetic Nervous System by Circulating Vasopressin

  • R. Kvetňanský
  • D. Ježová
  • Z. Opršalová
  • O. Földes
  • N. Michajlovskij
  • M. Dobrakovová
  • B. Lichardus
  • G. B. Makara
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 274)


Neural regulation of the sympathoadrenal system (SAS) is not yet fully understood. It has been shown that various areas within the brain interact with sympathetic preganglionic neurons in the thoracic cord (1,2). Secretion of epinephrine (EPI) or norepinephrine (NE) into the blood of rats was found to be changed after electrical stimulation of certain areas in the medulla oblongata (3), the pons, and the midbrain (4), as well as in different parts of the hypothalamus (5,6). Plasma catecholamines were shown to be modulated also by the action of brain catecholamines (7).


Plasma Renin Activity Diabetes Insipidus Immobilization Stress Sympathetic System Plasma Catecholamine Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tucker, D.C., and C.B. Saper, Specificity of spinal projections from hypothalamic and brainstem areas which innervate sympathetic preganglionic neurons, Brain Res 360: 159–164, 1985.PubMedCrossRefGoogle Scholar
  2. 2.
    Sourkes, T.L., Pathways of stress in the CNS, Prog Neuro-Psychopharmacol Biol Psychiat 7: 389–411, 1983.CrossRefGoogle Scholar
  3. 3.
    Matsui, H., Adrenal medullary secretory response to stimulation of the medulla oblongata in the rat, Neuroendocrinology 29: 385–390, 1979.PubMedCrossRefGoogle Scholar
  4. 4.
    Matsui, H., Adrenal medullary secretory response to pontine and mesencephalic stimulation in the rat, Neuroendocrinology 33: 84–87,1981.PubMedCrossRefGoogle Scholar
  5. 5.
    Sun, C.L., and I.J. Kopin, Plasma catecholamines and direct stimulation of rat hypothalamus, In E. Usdin, I.J. Kopin, and J. Barchas (eds) Catecholamines: Basic and Clinical Frontiers ,Pergamon Press, New York, pp. 1422–1424, 1979.Google Scholar
  6. 6.
    Dobrakovová, M., Z. Opršalová, and R. Kvetňanský, Plasma catecholamines in rats electrostimulated in different brain areas, In E. Usdin, R. Kvetňanský, and J. Axelrod (eds) Stress: The Role of Catecholamines and Other Neurotransmitters ,Gordon and Breach Science Publishers, New York, pp. 649–659, 1984.Google Scholar
  7. 7.
    Van Loon, G.R., Brain opioid peptide regulation of catecholamine secretion, In E. Usdin, R. Kvetňanský, and J. Axelrod (eds) Stress: The Role of Catecholamines and Other Neurotransmitters ,Gordon and Breach Science Publishers, New York, pp. 617–635, 1984.Google Scholar
  8. 8.
    Brown, M.R., Neuropeptide regulation of the autonomic nervous system, In Y. Taché, J.E. Morley, and M.R. Brown (eds) Neuropeptides and Stress ,Springer-Verlag, New York, pp. 107–120, 1989.CrossRefGoogle Scholar
  9. 9.
    King, KA., G. Mackie, C.C.Y. Pang, and RA. Wall, Central vasopressin in the modulation of catecholamine release in conscious rats, Can J Physiol Pharmacol 63: 1501–1505, 1985.PubMedCrossRefGoogle Scholar
  10. 10.
    Berecek, K.H., Role of central vasopressin in cardiovascular regulation, J Cardiovasc Pharmacol 8 [Suppl 7]: S76–S80, 1986.PubMedCrossRefGoogle Scholar
  11. 11.
    Patel, K.P., and P.G. Schmid, The role of central noradrenergic pathways in the actions of vasopressin on baroreflex control of circulation, In J.B. Buckley and C.M. Ferrario (eds) Brain Peptides and Catecholamines in Cardiovascular Regulation ,Raven Press, New York, pp. 53–64, 1987.Google Scholar
  12. 12.
    Martin, S.M., T.J. Malkinson, L.G. Bauce, W.L. Veale, and Q.J. Pittman, Plasma catecholamines in conscious rabbits after central administration of vasopressin, Brain Res 457: 192–195, 1988.PubMedCrossRefGoogle Scholar
  13. 13.
    Gilbey, M.P., J.H. Coote, S. Fleetwood-Walker, and D.H. Peterson, The influence of paraventricularspinal pathway, and oxytocin and vasopressin on sympathetic preganglionic neurons, Brain Res 251: 283–290, 1982.PubMedCrossRefGoogle Scholar
  14. 14.
    Imaizumi, T., and M.D. Thames, Influence of intravenous and intracerebroventricular vasopressin on baroreflex control of renal nerve traffic, Circ Res 55: 17–25, 1986.Google Scholar
  15. 15.
    Kiraly, M., M. Maillard, J.J. Dreifuss, and M. Dolivo, Neurohypophysial peptides depress cholinergic transmission in a mammalian sympathetic ganglion, Neurosci Lett 62: 89–95, 1985.PubMedCrossRefGoogle Scholar
  16. 16.
    Undesser, K.P., E.M. Hasser, J.R. Haywood, A.K. Johnson, and V.S. Bishop, Interactions of vasopressin with the area postrema in arterial baroreflex function in conscious rabbits, Circ Res 56: 410–417, 1985.PubMedGoogle Scholar
  17. 17.
    Pittman, Q.J., Brain vasopressin and cardiovascular regulation in normotensive and hypertensive animals, In Y. Tache, J.E. Morley, and M.R. Brown (eds) Neuropeptides and Stress ,Springer-Verlag, New York, pp. 134–145, 1989.CrossRefGoogle Scholar
  18. 18.
    Cowley, A.W., E. Monos, and A.C. Guyton, Interaction of vasopressin and baroreceptor reflex system in the regulation of arterial blood pressure in the dog, Circ Res 34: 505–514, 1974.PubMedGoogle Scholar
  19. 19.
    Liard, J.F., O. Deriaz, M. Tschopp, and J. Schoun, Cardiovascular effects of vasopressin infused into the vertebral circulation of dogs, Clin Sci 61: 345–347, 1981.PubMedGoogle Scholar
  20. 20.
    McNeill, J.R., Role of vasopressin in the control of arterial pressure, Can J Physiol Pharmacol 61: 1226–1235, 1983.PubMedCrossRefGoogle Scholar
  21. 21.
    Bennett, T., and S.M. Gardiner, Involvement of vasopressin in cardiovascular regulation, Cardiovasc Res 19: 57–68, 1985.PubMedCrossRefGoogle Scholar
  22. 22.
    Rascher, W., R.E. Land, and T.H. Unger, Vasopressin, cardiovascular regulation, an hypertension, In D. Ganten and D. Pfaff (eds) Current Topics in Neuroendocrinology: Neurobiology of Vasopressin ,Springer-Verlag, Berlin, pp. 101–136, 1985.Google Scholar
  23. 23.
    Kvetňanský, R., G.B. Makara, Z. Opršalová, M. Dobrakovová, and D. Ježová, Increased basal and stress-induced sympathetic activity in rats with lesion or deafferentation of the medial basal hypothalamus, Biogenic Amines 5: 275–290, 1988.Google Scholar
  24. 24.
    Kvetňanský, R., M. Dobrakovova, D. Ježová, Z. Opršalová, B. Lichardus, and G.B. Makara, Hypothalamic regulation of plasma catecholamine levels in stress: effect of vasopressin and CRF, In G.R. Van Loon, R. Kvetňanský, R. McCarty, and J. Axelrod (eds) Stress: Neurochemical and Humoral Mechanisms ,Gordon and Breach Science Publishers, New York, pp. 549–570, 1989.Google Scholar
  25. 25.
    Chiueh, C.C., and I.J. Kopin, Hyperresponsivity of spontaneously hypertensive rat to indirect measurement of blood pressure, Am J Physiol 234: H690–H695, 1978.PubMedGoogle Scholar
  26. 26.
    Kvetňanský, R., and L. Mikulaj, Adrenal and urinary catecholamines in rats during adaptation to repeated immobilization stress, Endocrinology 87: 738–743, 1970.PubMedCrossRefGoogle Scholar
  27. 27.
    Makara, G.B., E. Stark, and M. Palkovits, Reevaluation of the pituitary-adrenal response to ether in rats with various cuts around the medial basal hypothalamus, Neuroendocrinology 30: 38–44, 1980.PubMedCrossRefGoogle Scholar
  28. 28.
    Peuler, J.D., and GA. Johnson, Simultaneous single isotope radioenzymatic assay of plasma norepinephrine, epinephrine and dopamine, Life Sci 21: 625–636, 1977.PubMedCrossRefGoogle Scholar
  29. 29.
    Ježová, D., R. Kvetňanský, K. Kovács, Z. Opršalová, M. Vigaš, and G.B. Makara, Insulin-induced hypoglycemia activates the release of adrenocorticotropin predominantly via central and propranolol insensitive mechanisms, Endocrinology 120: 409–415, 1987.PubMedCrossRefGoogle Scholar
  30. 30.
    Murphy, B.C.P., Some studies on the protein-binding of steroids and their application to routine micro and ultramicro measurement of various steroids in body fluids by competitive protein-binding radioassay, J Clin Endocrinol Metab 27: 973–990, 1967.PubMedCrossRefGoogle Scholar
  31. 31.
    Kvetňanský, R., B. Lichardus, D. Ježová, Z. Opršalová, and G.B. Makara, Vasopressin and l-deamino-8-D-arginine-vasopressin (DDAVP) reduce elevated plasma catecholamine levels in rats with hypothalamic deafferentation, Cell Mole Neurobiol 8: 225–233, 1988.CrossRefGoogle Scholar
  32. 32.
    Lichardus, B., R. Kvetňanský, G.B. Makara, Z. Opršalová, N. Michajlovskij, O. Földes, and D. Ježová, Circulating vasopressin attenuates the increased activity of the sympathetic nervous system induced by anterolateral deafferentation of the hypothalamus, In K.D. Döhler and M. Pawlikowski (eds) Progress in Neuropeptide Research ,Birkhäuser Verlag, Basel, pp. 91–97, 1989.Google Scholar
  33. 33.
    Landsberg, L., J. de Champlain, and J. Axelrod, Increased biosynthesis of cardiac norepinephrine after hypophysectomy, J Pharmacol Exp Ther 165: 102–107, 1969.PubMedGoogle Scholar
  34. 34.
    Lamprecht, F., and G.F. Wooten, Effect of hypophysectomy on serum dopamines-hydroxylase activity in rat, Endocrinology 92: 1543–1546, 1973.PubMedCrossRefGoogle Scholar
  35. 35.
    Sharabi, F.M., G.B. Guo, F.M. Abboud, M.D. Thames, and P.G. Schmid, Contrasting effects of vasopressin on baroreflex inhibition of lumbar sympathetic nerve activity, Am J Physiol 249: H922–H928, 1985.PubMedGoogle Scholar
  36. 36.
    Michajlovskij, N., B. Lichardus, R. Kvetňanský, and J. Ponec, Vasopressin in plasma, median eminence and in anterior pituitary of rats under immobilization stress, In E. Usdin, R. Kvetňanský, and J. Axelrod (eds) Stress: Tlie Role of Catecholamines and Other Neurotransmitters ,Gordon and Breach Science Publishers, New York, pp. 365–372, 1984.Google Scholar
  37. 37.
    Michajlovskij, N., B. Lichardus, R. Kvetňanský, and J. Ponec, Effect of acute and repeated immobilization stress on food and water intake, urine output and vasopressin changes in rats, Endocrinol Exp 22:143–157, 1988.PubMedGoogle Scholar
  38. 38.
    Hanley, M.R., H.P. Benton, S.L. Lightman, K. Todd, EA. Bone, P. Fretten, S. Palmer, CJ. Kirk, and R.H. Michell, A vasopressin-like peptide in the mammalian sympathetic nervous system, Nature 309: 258, 1984.PubMedCrossRefGoogle Scholar
  39. 39.
    Antoni, FA., Characterization of high affinity binding sites for vasopressin in bovine adrenal medulla, Neuropeptides 4: 413, 1984.PubMedCrossRefGoogle Scholar
  40. 40.
    Clements, JA., and J.W. Funder, Arginine vasopressin and AVP-like immunoreactivity in peripheral tissues, Endocrine Rev 7: 449–460, 1986.CrossRefGoogle Scholar
  41. 41.
    Patel, K.P., CA. Shiteis, D.D. Lund, and P.G. Schmid, Effects of intravenous infusions of vasopressin and angiotensin II on central and peripheral noradrenergic function in conscious rabbit, Can J Physiol Pharmacol 65: 765–772, 1987.PubMedCrossRefGoogle Scholar
  42. 42.
    Kline, R.L. K.P. Patel, and P.F. Mercer, Enhance noradrenergic activity in kidney of Brattleboro rats with diabetes insipidus, Am J Physiol 250: R567–R572, 1986.PubMedGoogle Scholar
  43. 43.
    Zerbe, R.L., G. Veuerstein, D.K. Meyer, and IJ. Kopin, Cardiovascular sympathetic, and renin-angiotensin system responses to hemorrhage in vasopressin-deficient rats, Endocrinology 111: 608–613, 1982.PubMedCrossRefGoogle Scholar
  44. 44.
    Williams, J.L., and M.D. Johnson, Sympathetic nervous system and blood pressure maintenance in the Brattleboro DI rat, Am J Physiol 250: R770–R775, 1986.PubMedGoogle Scholar
  45. 45.
    Wooten, G., T. Hanson, and F. Lamprecht, Elevated serum dopamine-β-hydroxylase activity in rats with inherited diabetes insipidus, J Neural Transm 36: 107–112, 1975.PubMedCrossRefGoogle Scholar
  46. 46.
    Imai, Y., P. Nolan, and C. Johnston, Restoration of suppressed baroreflex sensitivity in rats with hereditary diabetes insipidus (Brattleboro rats) by arginine-vasopressin and dDAVP, Circ Res 53:140–149, 1983.PubMedGoogle Scholar
  47. 47.
    Baertschi, A.J., and J.L. Beny, Central control of ACTH secretion in diabetes insipidus Brattleboro rat, Ann NY Acad Sci 394: 591–606, 1982.PubMedCrossRefGoogle Scholar
  48. 48.
    Morris, J.F., The Brattleboro magnocellular neurosecretory system: a model for the study of peptidergic neurons, Ann NY Acad Sci 394: 54–71, 1982.PubMedCrossRefGoogle Scholar
  49. 49.
    Balment, R.J., M.J. Brimble, and M.L. Forsling, Oxytocin release and renal actions in normal and Brattleboro rats, Ann NY Acad Sci 394: 241–253, 1982.PubMedCrossRefGoogle Scholar
  50. Grassier, J., D. Ježová, R. Kvetňanský, and D.W. Scheuch, Hormonal responses to hemorrhage and their relationship to individual shock susceptibility, Endocrinol Exper In Press.Google Scholar
  51. 51.
    Bishop, V.S., E.M. Hasser, and K.P. Undesser, Vasopressin and sympathetic nerve activity: involvement of the area postrema, In J.P. Buckley and C.M. Ferrario (eds) Brain Peptides and Catecholamines in Cardiovascular Regulation ,Raven Press, New York, pp. 373–382, 1987.Google Scholar
  52. 52.
    Unger, T., P. Rohmeiss, G. Demmert, G. Detlev, R.E. Land, and F.C. Luft, Differential modulation of the baroreceptor reflex by brain and plasma vasopressin, Hypertension 8 [Suppl II]: 157–162, 1986.Google Scholar
  53. 53.
    Guo, G.B., F.M. Sharabi, F.M. Abboud, and P.G. Schmid, Vasopressin augments baroreflex inhibition of lumbar sympathetic nerve activity in rabbits, Circulation 66 [Suppl 2]: 34, 1982.Google Scholar
  54. 54.
    Osborn, J.W., M.M. Skelton, and A.W. Cowley, Hemodynamic effects of vasopressin compared with angiotensin II in conscious rats, Am J Physiol 252: H628–H637, 1987.PubMedGoogle Scholar
  55. 55.
    Sander-Jensen, K., N.H. Secher, A. Astrup, N.J. Christensen, M. Damkjaer-Nielsen, J. Giese, J. Warbert, and P. Bie, Angiotensin II attenuates reflex decrease in heart rat and sympathetic activity in man, Clin Physiol 8: 31–40, 1988.PubMedCrossRefGoogle Scholar
  56. 56.
    Peach, M.J., Pharmacology of angiotensin II, In Kidney Hormones, Volume III ,Academic Press, London, pp. 274–304, 1986.Google Scholar
  57. 57.
    Carey, R.M., C.E. Rose, and MJ. Peach, Role of the renin-angiotensin-aldosterone system in stress, In G.R. Van Loon, R. Kvetnansky. R. McCarty, and J. Axelrod (eds) Stress: Neurochemical and Humoral Mechanism ,Gordon and Breach Science Publishers, New York, pp. 833–844, 1989.Google Scholar
  58. 58.
    Miller, E.D., J.J. Beckman, J.R. Woodside, J.S. Althaus, and M J. Peach, Blood pressure control during anesthesia: importance of the peripheral sympathetic nervous system and renin, Anesthesiology 58: 32–37, 1983.PubMedCrossRefGoogle Scholar
  59. 59.
    Kosunen, K.J., A.J. Pakarinen, K. Kuoppasalone, and H. Adlercreutz, Plasma renin activity, angiotensin II and aldosterone during intense heat stress, J Applied Physiol 41: 323–327, 1976.Google Scholar
  60. 60.
    Anderson, D.E., C. Gomez-Sanchez, and J.R. Dietz, Suppression of plasma renin and aldosterone in stress-salt hypertension in dogs, Am J Physiol 251: R181–186, 1986.PubMedGoogle Scholar
  61. 61.
    Sowers, J.R., M. Tuck, N.D. Asp, and E. Sollars, Plasma aldosterone and corticosterone responses to adrenocorticotropin, angiotensin, potassium and stress in spontaneously hypertensive rats, Endocrinology 108: 1216–1221, 1981.Google Scholar
  62. 62.
    Jindra, A., R. Kvetňanský, T.I. Belova, and K.V. Sudakov, Effect of acute and repeated immobilization stress on plasma renin activity, catecholamines and corticosteroids in Wistar and August rats, In E. Usdin, R. Kvetňanský, and I.J. Kopin (eds) Catecholamines and Stress: Recent Advances ,Elsevier North Holland, New York, pp. 249–254, 1980.Google Scholar
  63. 63.
    Henderson, I.W., R.J. Balment, and JA. Oliver, Vasopressin effects on plasma renin activity in male and female rats, Clin Sci Mole Med 55: 301, 1978.Google Scholar
  64. 64.
    Gregory, L.C., E.W. Quillen, L.C. Keil, and IA. Reid, Effect of baroreceptor denervation on the inhibition of renin release by vasopressin, Endocrinology 123: 319–327, 1988.PubMedCrossRefGoogle Scholar
  65. 65.
    Malayan, SA., DJ. Ramsay, L.C. Keil, and IA. Reid, Effects of increases in plasma vasopressin concentration on plasma renin activity, blood pressure, heart rate and plasma corticosteroid concentration in conscious dogs, Endocrinology 107: 1899–1904, 1980.PubMedCrossRefGoogle Scholar
  66. 66.
    Richardson-Morton, K.D., L.D. Van de Kar, M.S. Brownfield, and C.L. Bethea, Neuronal cell bodies in the hypothalamic paraventricular nucleus mediate stress-induced renin and corticosterone secretion, Neuroendocrinology 50: 73–80, 1989.CrossRefGoogle Scholar
  67. 67.
    Porter, J.P., Electrical stimulation of paraventricular nucleus increases plasma renin activity, Am J Physiol 254: R325–R330, 1988.PubMedGoogle Scholar
  68. 68.
    Gotoh, E., R.MA. Golin, and W.F. Ganong, Relation of the ventromedial nuclei of the hypothalamus to the regulation of renin secretion, Neuroendocrinology 47: 518–522, 1988.PubMedCrossRefGoogle Scholar
  69. 69.
    Patel, K.P., and P.G. Schmid, Role of paraventricular nucleus in baroreflex-mediated changes in lumbar sympathetic nerve activity and heart rate, J Autonom Nerv Sys 22: 211–219, 1988.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • R. Kvetňanský
    • 1
  • D. Ježová
    • 1
  • Z. Opršalová
    • 1
  • O. Földes
    • 1
  • N. Michajlovskij
    • 1
  • M. Dobrakovová
    • 1
  • B. Lichardus
    • 1
  • G. B. Makara
    • 1
    • 2
  1. 1.Institute of Experimental Endocrinology, Centre of Physiological SciencesSlovak Academy of SciencesBratislavaCzechoslovakia
  2. 2.Institute of Experimental MedicineHungarian Academy of SciencesBudapestHungary

Personalised recommendations