Neuroendocrine Responses to Emotional Stress: Possible Interactions Between Circulating Factors and Anterior Pituitary Hormone Release

  • J. L. Meyerhoff
  • M. A. Oleshansky
  • K. T. Kalogeras
  • E. H. Mougey
  • G. P. Chrousos
  • L. G. Granger
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 274)


Anterior pituitary hormones released during stress have multiple direct and indirect effects in the periphery including mobilization of energy reserves (1) via gluconeogenesis and lipolysis (2, 3), effects on the cardiovascular (4) and immune systems (5, 6), and effects on electrolyte balance via stimulation of adrenal mineralocorticoid release. It seems logical that the necessity of orchestrating these potent effectors to adapt to specific challenges would require sophisticated modes of signalling between the pituitary cells and numerous circulating factors. We have recently described a stressful social interaction that elicits increases in plasma levels of the anterior pituitary peptide hormones derived from proopiomelanocortin (POMC): viz., adrenocorticotropin (ACTH), β-endorphin (β-EP) and β-Mipotrophic hormone (β-LPH) (7). Increases were also seen in plasma levels of the adrenal cortical hormone, Cortisol (CS), as well as prolactin (PRL), an anterior pituitary hormone not derived from POMC.


Atrial Natriuretic Peptide Plasma Renin Activity Corticotropin Release Factor Paraventricular Nucleus Median Eminence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mason, J.W., Over-all hormonal balance as a key to endocrine organization, Psychosom Med 30791–808, 1968.PubMedGoogle Scholar
  2. 2.
    Shanker, G., and R.K. Sharma, β-Endorphin stimulates corticosterone synthesis in isolated rat adrenal cells, Biochem Biophys Res Commun 86 1–5, 1979.PubMedGoogle Scholar
  3. 3.
    Richter, W.O., R.J. Naude, W. Oelofsen, and P. Schwandt, In Vitro lypolytic activity of β-endorphin and its partial sequences, Endocrinology 120 1472–1476, 1987.PubMedGoogle Scholar
  4. 4.
    Holaday, J.W., Cardiovascular effects of endogenous opiate systems, In R. George, R. Okun and A.K. Cho (eds) Ann Rev Pharmacol Toxicol, Volume 23 ,Annual Reviews Inc., Palo Alto, pp. 541–594, 1983.Google Scholar
  5. 5.
    Hirschhorn, K., F. Bach, R. Kolodny, I. Firschein, and N. Hashem, Immune response and mitosis of human peripheral blood lymphocytes in vitro, Science 142 1185–1187, 1963.PubMedGoogle Scholar
  6. 6.
    Spangelo, B.L., N.R. Hall, and A.L. Goldstein, Evidence that prolactin is an immunomodulatory hormone, In R.M. MacLeod, M.O. Thorner, and U. Scapagnini (eds) Prolactin Basic and Clinical Correlates ,Liviana Press, Padova, pp.343–349, 1985.Google Scholar
  7. 7.
    Meyerhoff, J.L., MA. Oleshansky, M.A., and E.H. Mougey, Psychologic stress increases plasma levels of prolactin, Cortisol and POMC-derived peptides in man, Psychosom Med 50 295–303, 1988.PubMedGoogle Scholar
  8. 8.
    Lake, C.R., M.G. Ziegler, and I.J. Kopin, Use of plasma norepinephrine for evaluation of sympathetic neuronal function in man, Life Sci 18 1315–1326, 1976.PubMedGoogle Scholar
  9. 9.
    Harley, L.H., J.W. Mason, R.P. Hogan, L.G. Jones, TA. Kotchen, E.H. Mougey, F.E. Wherry, L.L. Pennington, and P.T. Ricketts, Multiple hormonal responses to graded exercise in relation to physical training, J Appl Physiol 33 602–606, 1972.Google Scholar
  10. 10.
    Kotchen, TA., L.H. Hartley, T.W. Rice, E.H. Mougey, L.G. Jones, and J.W. Mason, Renin norepinephrine, and epinephrine responses to graded exercise, J Appl Physiol 31 178–184, 1971.PubMedGoogle Scholar
  11. 11.
    Grossman, A., P. Boulous, P. Price, P.L. Drury, K.S.L. Lam, T. Turner, J. Thomas, G.M. Besser, and J. Sutton, The role of opioid peptides in the hormonal responses to acute exercise in man, Clin Sci 67 483–491, 1984.PubMedGoogle Scholar
  12. 12.
    Fraioli, F., C. Moretti, D. Paolucci, E. Alicicco, F. Crescenzi, and G. Fortunio, Physical exercise stimulates marked concomitant release of β-endorphin and adrenocorticotropic hormone (ACTH) in peripheral blood in man, Experientia 36 987–989, 1980.PubMedGoogle Scholar
  13. 13.
    Janal, M.N., E.W.D. Colt, W.C. Clark, and M. Glusman, Pain sensitivity, mood and plasma endocrine levels in man following long-distance running effects of naloxone, Pain 19 13–25, 1984.PubMedGoogle Scholar
  14. 14.
    Gambert S.R., T.L. Garthwaite, C.H. Pontzer, E.E. Cook, F.E. Tristani, E.H. Duthie, D.R. Martinson, T.C. Hagen, and D.J. McCarty, Running elevates plasma β-endorphin immunoreactivity and ACTH in untrained human subjects, Proc Soc Exp Biol Med 168 1–4, 1981.PubMedGoogle Scholar
  15. 15.
    Buono, M.J., J.E. Yeager, and J.A. Hodgdon, Plasma adrenocorticotropin and Cortisol responses to brief high-intensity exercise in humans, J Appl Physiol 61 1337–1339, 1986.PubMedGoogle Scholar
  16. 16.
    Luger, A., PA. Deuster, S.B. Kyle, W.T. Gallucci, L.C. Montgomery, P.W. Gold, D.L. Loriaux, and G.P. Chrousos, Acute hypothalamic-pituitary-adrenal responses to the stress of treadmill exercise physiologic adaptations to physical training, N Engl J Med 316 1309–1315, 1987.PubMedGoogle Scholar
  17. 17.
    Oleshansky, M., J. Zoltick, R. Herman, E. Mougey, and J. Meyerhoff, Neuroendocrine responses to maximal treadmill exercise (abstract), Psychiatry Res 16(4) 72, 1986.Google Scholar
  18. 18.
    Colt, E.W.D., S.L. Wardlaw, and A.G. Frantz, The effect of running on plasma β-endorphin, Life Sci 28 1637–1640, 1981.PubMedGoogle Scholar
  19. 19.
    Elliot, D.L., L. Goldberg, W.J. Watts, and E. Orwoll, Resistance exercise and plasma beta-endorphin/beta-lipotrophin immunoreactivity, Life Sci 34 515–518, 1984.PubMedGoogle Scholar
  20. 20.
    Bortz, W.M., P. Angwin, I.N. Mefford, M.R. Boarder, N. Noyce, and J.D. Barchas, Catecholamines, dopamine, and endorphin levels during extreme exercise, N Engl J Med 305 466–467, 1981.PubMedGoogle Scholar
  21. 21.
    Mougey, E.H., A radioimmunoassay for tetrahydrocortisol, Anal Biochem 91 566–582, 1978.PubMedGoogle Scholar
  22. 22.
    Menard, J., and KJ. Catt, Measurement of renin activity, concentration and substrate in rat plasma by radioimmunoassay of angiotensin I, Endocrinology 90 422–430, 1972.PubMedGoogle Scholar
  23. 23.
    Robertson, G.L., and S. Athar, The interaction of blood osmolality and blood volume in regulating plasma vasopressin in man, J Clin Endocrinol Metab 42 613–620, 1976.PubMedGoogle Scholar
  24. 24.
    Stella, A., and a. Zanchetti, Control of renal renin release, Kidney Int [Supple] 31 S89–S94, 1987.Google Scholar
  25. 25.
    Meyerhoff, J.L., M.A. Oleshansky, E.H. Mougey, H.R. Smith, S.R. Hursh, L.K. Wittig, H.E. Wood, C.R. Glass, and D.B. Arnkoff, Increased heart rat and plasma level of -lipotropin during a competitive oral examination, Neurosci Abstr 12 1480, 1986.Google Scholar
  26. 26.
    Wood, H.E., C.R. Glass, D.B. Arnkoff, H.R. Smith, J.L. Meyerhoff, and MA. Oleshansky, An investigation of evaluation anxiety in an employment setting, Association for Advancement of Behavior Therapy, 20th Annual Convention ,Chicago, IL, November 14–16, 1986.Google Scholar
  27. 27.
    Robertson, G., and E. Mahr, The importance of plasma osmolality in regulation of antidiuretic hormone secretion in man, J Clin Invest 51 79a, 1972 (Abstract 261).Google Scholar
  28. 28.
    Robertson, G.L., The regulation of vasopressin function in health and disease, Rec Prog Horm Res 33 333–385, 1977.Google Scholar
  29. 29.
    Keil, L.C., and W.B. Severs, Reduction in plasma vasopressin levels of dehydrated rats following acute stress, Endocrinology 100 30–38, 1977.PubMedGoogle Scholar
  30. 30.
    Cuneo, R.C., J.H. Livesey, M.G. Nicholls, E.A. Espiner, and RA. Donald, Effects of alpha-2 adrenoreceptor blockade by yohimbine on the hormonal response to hypoglycemic stress in normal man, Horm Metab Res 21 33–36, 1989.PubMedGoogle Scholar
  31. 31.
    Goetz, K.L., G.C. Bond, and W.E. Smith, Effect of moderate hemorrhage in humans on plasma ADH and renin, Proc Soc Exp Biol Med 145 277–380, 1974.PubMedGoogle Scholar
  32. 32.
    Rydin, H., and E.B. Verney, The inhibition of water diuresis by emotional stress and by muscular exercise, Quart J Exp Physiol 27 343–375, 1938.Google Scholar
  33. 33.
    Kalin, N.H., D.M. Gibbs, C.M. Barksdale, S.E. Shelton, and M. Carnes, Behavioral stress decreases plasma oxytocin concentrations in primates, Life Sci 36 1275–1280, 1985.PubMedGoogle Scholar
  34. 34.
    Gibbs, D.M., Vasopressin and oxytocin hypothalamic modulators of the stress response a review, Psychoneuroendocrinology 11 131–140, 1986.PubMedGoogle Scholar
  35. 35.
    Rosella-Dampman, L.M., and J.Y. Summy-Long, Dexamethasone differentially alters naltrexone effects on plasma vasopressin and oxytocin concentrations elevated by tail electroshock in rats, Neurosci Abstr 10 91, 1984.Google Scholar
  36. 36.
    Cameron, V, E.A. Espiner, M.G. Nicholls, R.A. Donald, and M.R. MacFarlane, Stress hormone in blood and cerebrospinal fluid of conscious sheep effect of hemorrhage, Endocrinology 116 1460–1465, 1985.PubMedGoogle Scholar
  37. 37.
    Kasting, N.W., Simultaneous and independent release of vasopressin and oxytocin in the rat, Can J Physiol Pharmacol 66 22–26, 1988.PubMedGoogle Scholar
  38. 38.
    Gibbs, D.M., Dissociation of oxytocin, vasopressin and corticotropin secretion during different types of stress, Life Sci 35 487–491, 1984.PubMedGoogle Scholar
  39. 39.
    Husain, M.K., W.M. Manger, T.W. Rock, R.J. Weiss, and A.G. Frantz, Vasopressin release due to manual restraint in the rat role of body compression and comparison with other stressful stimuli, Endocrinology 104 641–644, 1979.PubMedGoogle Scholar
  40. 40.
    Michajlovskij, N., B. Lichardus, R. Kvetňanský, and J. Ponec, Effect of acute and repeated immobilization stress on food and water intake, urine output and vasopressin changes in rats, Endocrinol Exp 22143–157, 1988.PubMedGoogle Scholar
  41. 41.
    Onaka, T., M. Hamamura, and K. Yagi, Potentiation of vasopressin secretion by footshocks in rats, Jap J Physiol 36 1253–1260, 1986.Google Scholar
  42. 42.
    Knepel, W., D. Nutto, and G. Hertting, Effect of neonatal treatment with monosodium glutamate on vasopressin release during foot shock stress in the rat, Life Sci 33 1703–1709, 1983.PubMedGoogle Scholar
  43. 43.
    Knepel, W., R. Przewlocki, D. Nutto, and A. Herz, Foot shock stress-induced release of vasopressin in adenohypophysectomized and hypophysectomized rats, Endocrinology 117 292–299, 1985.PubMedGoogle Scholar
  44. 44.
    Knepel, W., D. Nutto, and H. Anhut, β-endorphin controls vasopressin release during foot sock-induced stress in the rat, Regul Pept 7 9–19, 1983.PubMedGoogle Scholar
  45. 45.
    Meyerhoff, J.L., G J. Kant, B.N. Bunnell, and E.H. Mougey, Regulation of pituitary cyclic AMP, plasma prolactin and POMC-derived responses to stressful conditions, In G.P. Chrousos, D.L. Loriaux, and P.W. Gold (eds) Mechanisms of Physical and Emotional Stress Advances in Experimental Medicine and Biology, Volume 245 ,Plenum Publishing Corporation, New York, pp. 107–122, 1988.Google Scholar
  46. 46.
    Carr, D.B., S.M. Fishman, N.W. Kasting, and D.V. Sheehan, Vasopressin response to lactate infusion in normals and patients with panic disorder, Fund Neurol1 123–127, 1986.Google Scholar
  47. 47.
    Edelson, J.T., and G.L. Robertson, The effect of the cold pressor test on vasopressin secretion in man, Psychoneuroendocrinology 11 307–316, 1986.PubMedGoogle Scholar
  48. 48.
    Wiegard, S.J., and J.L. Price, Cells of origin of the afferent fibers to the median eminence in the rat, J Comp Neurol 192 1–19, 1980.Google Scholar
  49. 49.
    Brownstein, M.J., J.T. Russell, and H. Gainer, Synthesis, transport and release of posterior pituitary hormones, Science 207 373–378, 1980.PubMedGoogle Scholar
  50. 50.
    Antoni, FA., Hypothalamic control of adrenocorticotropin secretion advances since the discovery of 41-residue corticotropin-releasing factor, Endocr Rev 7 351–378, 1986.PubMedGoogle Scholar
  51. 51.
    Swanson, L.W., P.E. Sawchenko, R.W. Lind, J.-H. Rho, The CRH motor neuron differential peptide regulation in neurons with possible synaptic, paracrine and endocrine outputs, In W.F. Ganong, M.F. Dallman, and J.L. Roberts (eds) The Hypothalamic-Pituitary-Adrenal Axis Revisited Annals of the New York Academy of Sciences 512 12–23, 1987.Google Scholar
  52. 52.
    Swanson, L.W., and P.E. Sawchenko, Hypothalamic integration organization of the paraventricular and supraoptic nuclei, Ann Rev Neurosci 6 269–324, 1983.PubMedGoogle Scholar
  53. 53.
    Sawchenko, P.E., L.W. Swanson, and W.W. Vale, Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat, Proc Natl Acad Sci USA 81 1883–1887, 1984.PubMedGoogle Scholar
  54. 54.
    Sawchenko, P.E., L.W. Swanson, and W.W. Vale, Corticotropin-releasing factor co-expression within distinct subsets of oxytocin-, vasopressin-, and neurotensin-immunoreactive neurons in the hypothalamus of the male rat, J Neurosci 4 1118–1129, 1984.PubMedGoogle Scholar
  55. 55.
    Sawchenko, P.E., Adrenalectomy-induced enhancement of CRF and vasopressin immunoreactivity in parvocellular neurosecretory neurons anatomic, peptide and steroid specificity, J Neurosci 7 1093–1106, 1987.PubMedGoogle Scholar
  56. 56.
    Lechan, R.M., J.L. Nestler, S. Jacobson, and S. Reichlin, The hypothalamic tuberoinfundibular system of the rat as demonstrated by horseradish peroxidase (HRP) microiontophoresis, Brain Res 195 13–27, 1980.PubMedGoogle Scholar
  57. 57.
    Whitnall, M.H., E. Mezey, and H. Gainer, Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles, Nature 317 248–250, 1985.PubMedGoogle Scholar
  58. 58.
    Vandessande, F., K. Dierickx, and J. De Mey, The origin of the vasopressinergic and oxytocinergic fibers of the external region of the median eminence of the rat hypophysis, Cell Tissue Res 180 443–452, 1977.Google Scholar
  59. 59.
    Zimmerman, EA., P.W. Carmel, M.K. Husain, M. Ferin, M. Tannenbaum, A.G. Frantz, and A.G. Robinson, Vasopressin and neurophysin high concentrations in monkey hypophyseal portal blood, Science 182 925–927, 1973.PubMedGoogle Scholar
  60. 60.
    Plotsky, P.M., T.O. Bruhn, and W. Vale, Evidence for multifactor regulation of the adrenocorticotropin secretory response to hemodynamic stimuli, Endocrinology 116 633–639, 1985.PubMedGoogle Scholar
  61. 61.
    Caraty, A., M. Grino, A. Locatelli, and C. Oliver, Secretion of corticotropin releasing factor (CRF) and vasopressin (AVP) into the hypophysial portal blood of conscious, unrestrained rams, Biochem and Biophys Res Commun 155 841–849, 1988.Google Scholar
  62. 62.
    Engler, D., T. Pham, M.J. Fullerton, G. Ooi, J.W. Funder, and IJ. Clarke, Studies of the secretion o corticotropin-releasing factor and arginine vasopressin into the hypophysial-portal circulation of the conscious sheep. I. Effect of an audiovisual stimulus and insulin-induced hypoglycemia, Neuroendocrinology 49 367–381, 1989.PubMedGoogle Scholar
  63. 63.
    Alexander, S.L., C.H.G. Irvine, J.H. Livesey, and RA. Donald, Effect of isolation stress on concentrations of arginine, α-melanocyte-stimulating hormone and ACTH in the pituitary venous effluent of the normal horse, J Endocrinology 116 325–334, 1988.Google Scholar
  64. 64.
    Holmes, M.C., FA. Antoni, G. Aguilera, and K.J. Catt, Magnocellular axons in passage through the median eminence release vasopressin, Nature 319 326–329, 1986.PubMedGoogle Scholar
  65. 65.
    Bergland, R.M., and R.B. Page, Can the pituitary secrete directly to the brain? (Affirmative anatomical evidence), Endocrinology 102 1325–1338, 1978.PubMedGoogle Scholar
  66. 66.
    Oliver, C, R.S. Mical, and J.C. Porter, Hypothalamic-pituitary vasculature evidence for retrograde blood flow in the pituitary stalk, Endocrinology 101 598–604, 1977.PubMedGoogle Scholar
  67. 67.
    Recht, L.D., D.L. Hoffman, J. Haldar, A J.Silverman, and EA. Zimmerman, Vasopressin concentrations in hypophysial portal plasma insignificant reduction following removal of the posterior pituitary gland, Neuroendocrinology 33 88–90, 1981.PubMedGoogle Scholar
  68. 68.
    Gillies, G.E., E.A. Linton, and P.J. Lowry, Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin, Nature 299 355–357, 1982.PubMedGoogle Scholar
  69. 69.
    Rivier, C, and W. Vale, Interaction of corticotropin-releasing factor and arginine vasopressin on adrenocorticotropin secretion in vivo, Endocrinology 113 939–942, 1983.PubMedGoogle Scholar
  70. 70.
    Bruhn, T.O., P.M. Plotsky, and W.W. Vale, Effect of paraventricular lesions on corticotropin-releasing factor (CRF)-like immunoreactivity in the stalk-median eminence studies on the adrenocorticotropin response to ether stress and exogenous CRF, Endocrinology 114 57–62, 1984.PubMedGoogle Scholar
  71. 71.
    Meyerhoff, J.L., E.H. Mougey, and G J. Kant, Paraventricular lesions abolish the stress-induced rise in pituitary cyclic adenosin monophosphate and attenuate the increases in plasma levels of proopiomelanocortin-derived peptides and prolactin, Neuroendocrinology 46 222–230, 1987.PubMedGoogle Scholar
  72. 72.
    Aguilera, G., J.P. Harwood, J.X. Wilson, J. Morrell, J.H. Brown, and K.J. Catt, Mechanisms of action of corticotropin-releasing factor and other regulators of corticotropin release in rat pituitary cells, J Biol Chem 258 8039–8045, 1983.PubMedGoogle Scholar
  73. 73.
    Bilezikjian, L.M., and W.W. Vale, Regulation of ACTH secretion from corticotrophs the interaction of vasopressin and CRF, Ann NY Acad Sci 512 85–96, 1987.PubMedGoogle Scholar
  74. 74.
    Abou-Samra, A.-B., K.J. Catt, and G. Aguilera, Involvement of protein kinase C in the regulation of adrenocorticotropin release from rat anterior pituitary cells, Endocrinology 118 212–217, 1986.PubMedGoogle Scholar
  75. 75.
    Ono, N., J.B. de Castro, O, Khorram, and S.M. McCann, Role of arginine vasopressin in control of ACTH and LH release during stress, Life Sci 36 1779–1786, 1985.PubMedGoogle Scholar
  76. 76.
    Linton, EA., FJ.H. Tilders, S. Hodgkinson, F. Berkenbosch, I. Vermes, and P.J. Lowry, Stress-induced secretion of adrenocorticotropin in rats is inhibited by administration of antisera to ovine corticotropin-releasing factor and vasopressin, Endocrinology 116 966–970, 1985.PubMedGoogle Scholar
  77. 77.
    Sweep, C.G.J., and V.M. Wiegant, Release of β-endorphin-immunoreactivity from rat pituitary and hypothalamus in vitro effects of isoproterenol, dopamine, corticotropin-releasing factor and arginine-vasopressin, Biochem Biophys Res Commun 161 221–228, 1989.PubMedGoogle Scholar
  78. 78.
    Rivier, C, and W. Vale, Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin, Nature 305 325–327, 1983.PubMedGoogle Scholar
  79. 79.
    Tilders, F.J.H., F. Berkenbosch, I. Vermes, EA. Linton, and P.G. Smelik, Role of epinephrine and vasopressin in the control of the pituitary-adrenal response to stress, Fed Proc 44 155–160, 1985.PubMedGoogle Scholar
  80. 80.
    Fagin, K.D., S.G. Wiener, and M.F. Dallman, ACTH and corticosterone secretion in rats following removal of the neurointermediate lobe of the pituitary gland, Neuroendocrinology 40 352–362, 1985.PubMedGoogle Scholar
  81. 81.
    DeBold, C.R., W.R. Sheldon, G.S. DeCherney, R.V. Jackson, A.N. Alexander, W. Vale, J. Rivier, and D.N. Orth, Arginine vasopressin potentiates adrenocorticotropin release induced by ovine corticotropin-releasing factor, J Clin Invest 73 533–538, 1984.Google Scholar
  82. 82.
    Liu, J.H., K. Muse, P. Contreras, D. Gibbs, W. Vale, J. Rivier, and S.S.C. Yen, Augmentation of ACTH-releasing activity of synthetic corticotropin releasing factor (CRF) by vasopressin in women, J Clin Endocrinol Metab 57 1087–1089, 1983.PubMedGoogle Scholar
  83. 83.
    Mason, J.W., and J.V. Brady, Plasma 17-hydroxycorticosteroid changes related to reserpine effects on emotional behavior, Science 124 983–984, 1956.PubMedGoogle Scholar
  84. 84.
    Williams, Jr., R.B., J.D. Lane, CM. Kuhn, W. Melosh, A.D. While, and S.M. Schanberg, Type A behavior and elevated physiological and neuroendocrine responses to cognitive tasks, Science 218 483–485,1982.PubMedGoogle Scholar
  85. 85.
    Baumgartner, A., KJ. Graf, and I. Kurten, The dexamethasone suppression test in depression, in schizophrenia, and during experimental stress, Biol Psychiatry 20 675–679, 1985.PubMedGoogle Scholar
  86. 86.
    Nesse, R.M., G.C. Curtis, B.A. Thyer, D.S. McCann, M.J. Huber-Smith, and R.F. Knopf, Endocrine and cardiovascular responses during phobic anxiety, Psychosom Med 47 320–332,1985.PubMedGoogle Scholar
  87. 87.
    Fredrikson, M., O. Sundin, and M. Frankenhaeuser, Cortisol excretion during the defense reaction in humans, Psychosom Med 47 313–319, 1985.PubMedGoogle Scholar
  88. 88.
    Lovallo, W.R., GA. Pincomb, G.L. Edwards, D.J. Brackett, and M.F. Wilson, Work pressure and the type A behavior pattern exam stress in male medical students, Psychosom Med 48 125–133, 1986.PubMedGoogle Scholar
  89. 89.
    Frankenhaeuser, M., M.R. Von Wright, A. Collins, J. Von Wright, G. Sedvall, and C.-G. Swahn, Sex differences in psychoneuroendocrine reactions to examination stress, Psychosom Med 40 334–343,1978.PubMedGoogle Scholar
  90. 90.
    Czeisler, C.A., M.C.M. Ede, Q.R. Regestein, E.S. Kisch, V.S. Fang, and E.N. Ehrlich, Episodic 24-hour Cortisol secretory patterns in patients awaiting elective cardiac surgery, J Clin Endocrinol Metab 42 273–283, 1976.PubMedGoogle Scholar
  91. 91.
    Oltras, C.M., F. Mora, and F. Vives, Beta-endorphin and ACTH in plasma effects of physical and psychological stress, Life Sci 40 1683–1686, 1987.PubMedGoogle Scholar
  92. 92.
    Levine, S., Cortisol changes following repeated experiences with parachute training, In H. Ursin, E. Baade, and S. Levine (eds) Psychobiology of Stress A Study of Coping Men ,Academic Press, New York, pp. 51–56, 1978.Google Scholar
  93. 93.
    Aguilera, G., P.C. Wynn, J.P. Harwood, R.L. Hauger, MA. Millan, C. Grewe, and K.J. Catt, Receptor-mediated actions of corticotropin-releasing factor in pituitary gland and nervous system, Neuroendocrinology 43 79–88, 1986.PubMedGoogle Scholar
  94. 94.
    Meyerhoff, J.L., G.J. Kant, C.J. Nielsen, and E.H. Mougey, Adrenalectomy abolishes the stress-induced increase in pituitary cyclic AMP, Life Sci 34 1959–1965, 1984.PubMedGoogle Scholar
  95. 95.
    Sawchenko, P.E., and L.W. Swanson, Localization, and colocalization, and plasticity of corticotropin-releasing factor immunoreactivity in rat brain, Fed Proc 44 221–227, 1985.PubMedGoogle Scholar
  96. 96.
    Knepel, W., D. Nutto, D.K. Meyer, and M. Vlaskovska, Vasopressin release from rat medial basal hypothalamus in vitro after adrenalectomy or lesions of the paraventricular nuclei, Neurosci Lett 48 321–326, 1984.PubMedGoogle Scholar
  97. 97.
    Sawchenko, P.E. Short-loop feedback effects of adrenocorticotrophic hormone on corticotropin-releasing factor and vasopressin-immunoreactivity in the paraventricular nucleus, Neurosci Abstr 15 134, 1989.Google Scholar
  98. 98.
    Tigranian, RA., L.L. Orloff, N.F. Kalita, NA. Davydova, and EA. Pavlova, Changes of blood-levels of several hormones, catecholamines, prostaglandins, electrolytes and cAMP in man during emotional stress, Endocrinol Exp 14 101–112, 1980.PubMedGoogle Scholar
  99. 99.
    Januszewicz, W., M. Sznajderman, B. Wocial, T. Feltynowski, and T. Klonowicz, The effect of mental stress on catecholamines, their metabolites and plasma renin activity in patients with essential hypertension and in health subjects, Clin Sci 57 229s–231s, 1979.PubMedGoogle Scholar
  100. 100.
    Kosunen, K.J., Plasma renin activity, angiotensin II, and aldosterone after mental arithmetic, Scand J Clin Lab Invest 37 425–429, 1977.PubMedGoogle Scholar
  101. 101.
    Clamage, D.M., A.J. Vander, and D.R. Mouw, Psychosocial stimuli and human plasma renin activity, Psychosom Med 39 393–401, 1977.PubMedGoogle Scholar
  102. 102.
    Hjemdahl, P., and K. Eliasson, Sympathoadrenal and cardiovascular response to mental stress and orthostatic provocation in latent hypertension, Clin Sci 57 189s–191s, 1979.PubMedGoogle Scholar
  103. 103.
    Adlercreutz, H., K. Kuoppasalmi, S. Narvanen, K. Kosunen, and R. Heikkinen, Use of hypnosis in studies of the effect of stress on cardiovascular function and hormones, Acta Med Scand [Suppl] 660 84–94,1982.Google Scholar
  104. 104.
    Oleshansky, MA., J.L. Meyerhoff, E.H. Mougey, and H.R. Smith, Psychological stressor (Oral Exam) increases plasma levels of catecholamines in man, Neuroendocrinol Lett 9 184, 1987 (Abstract).Google Scholar
  105. 105.
    Sigg, E.B, K.L. Keim, and T.D. Sigg, On the mechanism of renin release of restraint stress in rats, Pharmacol Biochem Behav 8 47–50, 1978.PubMedGoogle Scholar
  106. 106.
    Clamage, D.M., C.S. Sanford, A.J. Vander, and D.R. Mouw, Effects of psychosocial stimuli on plasma renin activity in rats, Am J Physiol 231 1290–1294, 1976.PubMedGoogle Scholar
  107. 107.
    Van de Kar, L.D., SA. Lorens, Cr. McWilliams, K. Kunimoto, J.H. Urban, and L. Bethea, Role of midbrain raphe in stress-induced renin and prolactin secretion, Brain Res 311 333–341, 1984.PubMedGoogle Scholar
  108. 108.
    Morton, K.D.R., L.D. Van de Kar, M.S Brownfield, and C.L. Bethea, Neuronal cell bodies in the hypothalamic paraventricular nucleus mediate stress-induced renin and corticosterone secretion, Neuroendocrinology 50 73–80, 1989.PubMedGoogle Scholar
  109. 109.
    Davis, J.O., and R.H. Freeman, Mechanisms regulating renin release, Physiol Rev 56 1–56, 1976.PubMedGoogle Scholar
  110. 110.
    Millan, M.H., A-BA. Samra, P.C. Wynn, K.J. Catt, and G. Aguilera, Receptors and actions of corticotropin-releasing hormone in the primate pituitary gland, J Clin Endocrinol Metab 64 1036–1041, 1987.PubMedGoogle Scholar
  111. 111.
    Mukherjee, A., P. Kulkarni, S.M. McCann, and A Negro-Vilar, Evidence for the presence and characterization of angiotensin II receptors in rat anterior pituitary membranes, Endocrinology 110 665–667, 1982.PubMedGoogle Scholar
  112. 112.
    Bonjour, J.P., and R.L. Malvin, Stimulation of ADH release by the renin-angiotensin system, Am J Physiol 218 1555–1559, 1970.PubMedGoogle Scholar
  113. 113.
    Padfield, P.L., and J J. Morton, Effects of angiotensin II on arginine-vasopressin in physiological and pathological situation in man, J Endocrinol 74 251–259, 1977.PubMedGoogle Scholar
  114. 114.
    Wilson, K.M., C. Sumners, S. Hathaway, and M.J. Fregly, Mineralocorticoids modulate central angiotensin II receptors in rats, Brain Res 382 87–96, 1986.PubMedGoogle Scholar
  115. 115.
    Cameron, V.A., EA. Espiner, M.G. Nicholls, M.R. MacFarlane, and W.A. Sadler, Intracerebroventricular Captopril reduces plasma ACTH and vasopressin responses to hemorrhagic stress, Life Sci 38 553–559, 1986.PubMedGoogle Scholar
  116. 116.
    Iovino, M., and L. Steardo, Vasopressin release to central and peripheral angiotensin II in rats with lesions of the subfornical organ, Brain Res 322 365–368, 1984.PubMedGoogle Scholar
  117. 117.
    Ferguston, A.V., and L.P. Renaud, Systemic angiotensin acts at subfornical organ to facilitate activity of neurohypophysial neurons, Am J Physiol R251 R712–R717, 1986.Google Scholar
  118. 118.
    Ferguston, A.V., Systemic angiotensin acts at the subfornical organ to control the activity of paraventricular nucleus neurons with identified projections to the median eminence, Neuroendocrinology 47 489–497, 1988.Google Scholar
  119. 119.
    Atlas, S.A., M. Volpe, R.E. Sosa, J.H. Laragh, M.J.F. Camargo, and T. Maack, Effects of atrial natriuretic factor on blood pressure and the renin-angiotensin-aldosterone system, Fed Proc 45 2115–2121, 1986.PubMedGoogle Scholar
  120. 120.
    Antoni, FA., and G. Dayanithi, Atriopeptin inhibits pituitary corticotropin release in vitro involvement of cyclic GMP and potassium channels, Neurosci Abstr 15 1080, 1989.Google Scholar
  121. 121.
    Kalogeras, K.T., MA. Demitrack, L.G. Granger, E.L. Papioannou, M.J. Hart, G.P. Chrousos, and P.W. Gold, Responses of plasma atrial natriuretic peptide and arginine vasopressin to osmotic and volume stimulation, Neurosci Abstr 15 1078, 1989.Google Scholar
  122. 122.
    Aguilera, G., C.L. Hyde, and K.J. Catt, Angiotensin II receptors and prolactin release in pituitary lactotrophs, Endocrinology 111 1045–1050,1982.PubMedGoogle Scholar
  123. 123.
    Voigt, K.H., D. Frank, E. Düker, R. Martin, and W. Wuttke, Dopamine-inhibited release of prolactin and intermediate lobe-POMC-peptides different modulation by opioids, Life Sci 33 507–510, 1983.PubMedGoogle Scholar
  124. 124.
    Mormede, P., J.-D. Vincent, and B. Kerdelhue, Vasopressin and oxytocin reduce plasma prolactin levels of conscious rats in basal and stress conditions. Study of the characteristics of the receptor involved, Life Sci 39 1737–1743, 1986.PubMedGoogle Scholar
  125. 125.
    Dimsdale, J.E., and J. Moss, Short-term catecholamine response to psychological stress, Psychosom 42 493–497, 1980.Google Scholar
  126. 126.
    Natelson, B.H., W.N. Tapp, J.E. Adamus, J.C. Mittler, and B.E. Levin, Humoral indices of stress in rats, Physiol Behav 26 1049–1054, 1981.PubMedGoogle Scholar
  127. 127.
    Kvetňanský, R., C.L. Sun C.R. Lake, N. Thoa, T. Torda, and I.J. Kopin, Effect of handling and forced immobilization of rat plasma levels of epinephrine, norepinephrine, and dopamines-β-hydroxylase, Endocrinology 103 1868–1874, 1978.PubMedGoogle Scholar
  128. 128.
    Kant, G. J., M.A. Oleshansky, D.D. Walczak, E.H. Mougey, and J.L. Meyerhoff, Comparison of the effects of CRF and stress on levels of pituitary cyclic AMP and plasma ACTH in vivo, Peptides 7 1153–1158, 1986.PubMedGoogle Scholar
  129. 129.
    Mezey, E., T.D. Reisin, M. Palkovits, M J. Brownstein, and J. Axelrod, Direct stimulation of β2-adrenergic receptors in rat anterior pituitary induced the release of adrenocorticotropin in vivo, Proc Natl Acad Sci USA 80 6728–6731, 1983.PubMedGoogle Scholar
  130. 130.
    Makara, G.B., R. Kvetňanský, D. Ježová, A. Jindra, I. Kakucska, and Z. Opršalová, Plasma catecholamines do not participate in pituitary-adrenal activation by immobilization stress in rats with transection of nerve fibers to the median eminence, Endocrinology 119 1757–1762, 1986.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. L. Meyerhoff
    • 1
  • M. A. Oleshansky
    • 1
  • K. T. Kalogeras
    • 1
    • 2
  • E. H. Mougey
    • 1
  • G. P. Chrousos
    • 1
    • 2
  • L. G. Granger
    • 1
    • 2
  1. 1.Neurochemistry & Neuroendocrinology Branch Department of Medical Neurosciences Division of NeuropsychiatryWalter Reed Army Institute of ResearchUSA
  2. 2.Developmental Endocrinology Branch, NICHHDNational Institutes of HealthBethesdaUSA

Personalised recommendations