Exchange of Peptides Between the Circulation and the Nervous System: Role of the Blood-Brain Barrier

  • William A. Banks
  • Abba J. Kastin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 274)


Peptides can cross the blood-brain barrier (BBB) bidirectionally, that is, from the central nervous system (CNS) to the blood or from the blood to the CNS. Passage occurs by both saturable and nonsaturable mechanisms that can be modified by factors such as lighting, amino acids, monoamines, aging, and neurotoxins. The role of this regulated exchange may be involved in processes such as analgesia, stress, dementia, and addiction. In this review, we shall emphasize the mechanisms regulating exchange of peptides between the circulation and the CNS and explore some of the implications of this exchange on selected biological functions.


Amyotrophic Lateral Sclerosis Lipid Solubility Cereb Blood Flow Entry Rate Arginine Vasotocin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kastin, A.J., R.D. Olson, A.V. Schally, and D.H. Coy, CNS effects of peripherally administered brain peptides, Life Sci 25: 401–414, 1979.PubMedCrossRefGoogle Scholar
  2. 2.
    Rapoport, S.I., Transport of sugar, amino acids, and other substances at the blood brain barrier, Blood-Brain Barrier in Physiology and Medicine ,Raven Press, New York, pp. 177–206, 1976.Google Scholar
  3. 3.
    Banks, W.A., and A. J. Kastin, Permeability of the blood-brain barrier to neuropeptides: the case for penetration, Psychoneuroendocrinology 10: 385–399, 1985.PubMedCrossRefGoogle Scholar
  4. 4.
    Kastin, A.J., C. Nissen, A.V. Schally, and D.H. Coy, Blood-brain barrier, half-time disappearance, and brain distribution for labeled enkephalin and a potent analog, Brain Res Bull 1: 583–589, 1976.PubMedCrossRefGoogle Scholar
  5. 5.
    Conford, E.M., L.D. Braun, P.D. Crane, and W.H. Oldendorf, Blood-brain barrier restriction of peptides and the low uptake of enkephalins, Endocrinology 103: 1297–1303, 1978.CrossRefGoogle Scholar
  6. 6.
    Banks, W.A., and A.J. Kastin, A brain-to-blood carrier-mediated transport system for small, N-tyrosinated peptides, Pharmacol Biochem Behav 21: 943–946, 1984.PubMedCrossRefGoogle Scholar
  7. 7.
    Sharma, R.R., and R.L.P. Vimal, Theoretical interpretation of extraction (in brain) of peptides including concentration variations, Brain Res 308: 201–214, 1984.PubMedCrossRefGoogle Scholar
  8. 8.
    Banks, WA., A.J. Kastin, A. Horvath, and E.A. Michals, Carrier-mediated transport of vasopressin across the blood-brain barrier of the mouse, J Neurosci Res 18: 326–332, 1987.PubMedCrossRefGoogle Scholar
  9. 9.
    Takasato, Y., S.I. Rapoport, and Q.R. Smith, An in situ brain perfusion technique to study cerebrovascular transport in the rat, Am J Physiol 247: H484–H493, 1984.PubMedGoogle Scholar
  10. 10.
    Zlokovič, B.V., DJ. Begley, B.M. Duricic, and D.M. Mitrovič, Measurment of solute transport across the blood-brain barrier in the perfused guinea pig brain: methods and application to N-methyl-a-aminoisobutyric acid, J Neurochem 46: 1444–1451, 1986.PubMedCrossRefGoogle Scholar
  11. 11.
    Banks, WA., and A J. Kastin, Quantifying carrier-mediated transport of peptides from the brain to the blood, Methods Enzymol 168: 652–660, 1989.PubMedCrossRefGoogle Scholar
  12. 12.
    Blasberg, R.G., J.D. Fenstermacher, and C.S. Patlak, The transport of a-aminoisobutyric acid across brain capillary and cellular membranes, J Cereb Blood Flow and Metab 3: 8–32, 1983.CrossRefGoogle Scholar
  13. 13.
    Patlak, C.S., R.G. Blasberg, and J.D. Fenstermacher, Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data, J Cereb Blood Flow and Metab 3: 1–7, 1983.CrossRefGoogle Scholar
  14. 14.
    Banks, W.A., A.J. Kastin, D.H. Coy, and E. Angulo, Entry of DSIP peptides into the dog CSF: role of physicochemical and pharmacokinetic parameters, Brain Res Bull 17: 155–158, 1986.PubMedCrossRefGoogle Scholar
  15. 15.
    Kastin, A.J., C. Nissen, and D.H. Coy, Permeability of the blood-brain barrier to DSIP peptides, Pharmacol Biochem Behav 15: 955–959, 1981.PubMedCrossRefGoogle Scholar
  16. 16.
    Banks, WA., AJ. Kastin, and D.H. Coy, Evidence that [125I]-N-Tyr-delta sleep-inducing peptide crosses the blood-brain barrier by a non-competitive mechanism, Brain Res 301: 201–207, 1984.PubMedCrossRefGoogle Scholar
  17. 17.
    Miller, L.H., B.A. Turnbull, A.J. Kastin, and D.H. Coy, Sleep-wave activity of a delta sleep-inducing peptide analog correlates with its penetrance of the blood-brain barrier, Sleep 9: 80–84, 1986.PubMedGoogle Scholar
  18. 18.
    Zlokovič, B.V., M.B. Segal, H. Davson, and R.M. Jankov, Passage of delta sleep-inducing peptide (DSIP) across the blood-cerebrospinal fluid barrier, Peptides 9: 533–538, 1988.PubMedCrossRefGoogle Scholar
  19. 19.
    Banks, WA., and A.J. Kastin, Peptides and the blood-brain barrier: lipophilicity as a predictor of permeability, Brain Res Bull 15: 287–292, 1985.PubMedCrossRefGoogle Scholar
  20. 20.
    Wilson, J.F., Low permeability of the blood-brain barrier to nanomolar concentrations of immunoreactive alpha-melanotropin, Psychopharmacology 96: 262–266, 1988.PubMedCrossRefGoogle Scholar
  21. 21.
    Kastin, A J., C. Nissen, K. Nikolics, K. Medzihradszky, D.H. Coy, I. Teplan, and A.V. Schally, Distribution of 3H--MSH in rat brain, Brain Res Bull 1: 19–26, 1976.PubMedCrossRefGoogle Scholar
  22. 22.
    Zlokovič, B.V., M.N. Lipovac, DJ. Begley, H. Davson, and L. Rakič, Slow penetration of thyrotropin-releasing hormone across the blood-brain barrier of an in situ perfused guinea pig brain, J Neurochem 51: 252–257, 1988.PubMedCrossRefGoogle Scholar
  23. 23.
    Banks, WA., AJ. Kastin, AJ. Fischman, D.H. Coy, and S.L. Strauss, Carrier-mediated transport of enkephalins and N-Tyr-MIF-1 across blood-brain barrier, Am J Physiol 251: E477–E482, 1986.PubMedGoogle Scholar
  24. 24.
    Banks, W.A., and A. J. Kastin, Effect of neurotransmitters on the system that transports Tyr-MIF-1 and the enkephalins across the blood-brain barrier: a dominant role for serotonin, Psychopharmacology 98: 10. 380–385, 1989.PubMedCrossRefGoogle Scholar
  25. 25.
    Zlokovič, B.V., M.N. Lipovac, DJ. Begley, H. Davson, and L. Rakič, Transport of leucine-enkephalin across the blood-brain barrier in the perfused guinea pig brain, J Neurochem 49: 310–315, 1987.PubMedCrossRefGoogle Scholar
  26. 26.
    Zlokovič, B.V., M.B. Segal, H. Davson, and D.M. Mitrovič, Unidirectional uptake of enkephalins at the blood-tissue interface of the blood-cerebrospinal fluid barrier: a saturable mechanism, Reg Peptides 20: 33–44, 1988.CrossRefGoogle Scholar
  27. 27.
    Ermisch, A., R. Landgraf, G. Heinold, and G. Sterba, Vasopressin, blood-brain barrier, and memory, In: CA. Marsan and H. Matthies (eds) Neuronal Plasticity and Memory Formation ,New York, Raven Press, pp. 147–152, 1982.Google Scholar
  28. 28.
    Banks, WA, and A.J. Kastin, Aging and the blood-brain barrier: changes in the carrier-mediated transport of peptides in rats, Neurosci Lett 61: 171–175, 1985.PubMedCrossRefGoogle Scholar
  29. 29.
    Barrera, C.M., A.J. Kastin, and WA. Banks, D-[AlaI]-Peptide T-amide is transported from the blood to the brain by a saturable system, Brain Res Bull 19: 629–633, 1987.PubMedCrossRefGoogle Scholar
  30. 30.
    Barrera, C.M., WA. Banks, and A.J. Kastin, LHRH crosses the blood-brain barrier by a saturable transport system, Clinical Res 37: 31A, 1989.Google Scholar
  31. 31.
    Banks, W.A., A.J. Kastin, and J.K. Selznick, Modulation of immunoactive levels of DSIP and blood-brain barrier permeability by lighting and diurnal rhythm, J Neurosci Res 14: 347–355, 1985.PubMedCrossRefGoogle Scholar
  32. 32.
    Ermisch, A., H.J. Rühle, R. Landgraf, and J. Hess, Blood-brain barrier and peptides, J Cereb Blood Flow andMetab 5: 350–357, 1985.CrossRefGoogle Scholar
  33. 33.
    Banks, W.A., and A.J. Kastin, Modulation of the carrier-mediated transport of Tyr-MIF-1 across the blood-brain barrier by essential amino acids, J Pharmacol Exp Ther 239: 668–672, 1986.PubMedGoogle Scholar
  34. 34.
    Jeune, M., C. Collombel, M. Michel, M. David, P. Guiboult, G. Guerrier, and J. Albert, Hyperleucinisoleucinemie par defaut partiel de transamination associee a une hyperprolinemie de type 2. Observation familiale d’une double aminoacidopathie, Sam Hop Paris (Ann Pediatr) 17: 85–99, 1970.Google Scholar
  35. 35.
    Brandt, N.J., L. Terenius, B.B. Jacobsen, L. Klinken, A. Nordius, S. Brandt, K. Blegvad, and M. Yssing, Hyper-endorphin syndrome in a child with necrotizing encephalomyelopathy, N Engl J Med 303: 914–916, 1980.PubMedCrossRefGoogle Scholar
  36. 36.
    Banks, WA., and A J. Kastin, Twenty-one hormones fail to inhibit the brain to blood transport system for Tyr-MIF-1 and the enkephalins in mice, J Pharm Pharmacol 40: 289–291, 1988.PubMedCrossRefGoogle Scholar
  37. 37.
    Banks, W.A., A J. Kastin, and B.J. Nager, Analgesia and the blood-brain barrier transport system for Tyr-MIF-1/enkephalins: evidence for a dissociation, Neuropharmacology 27: 175–179, 1988.PubMedCrossRefGoogle Scholar
  38. 38.
    Banks, W.A., and A.J. Kastin, Aging, peptides, and the blood-brain barrier: implications and speculations, In: T. Crook, R. Bartus, S. Ferris, and S. Gerhson (eds), Treatment Development Strategies for Alzheimer’s Disease ,Mark Powley and Associates, Madison, CT, pp. 245–265, 1986.Google Scholar
  39. 39.
    Banks, WA., and A.J. Kastin, Commentary: Peptides and the senescent blood-brain barrier, Neurobiol Aging 9: 48–49, 1988.PubMedCrossRefGoogle Scholar
  40. 40.
    Huang, J.T., Accumulation of amino acid and peptide by choroid plexus of the aging rat, Age 7: 63–65, 1984.CrossRefGoogle Scholar
  41. 41.
    Huang, J.T., and A. Lajtha, The accumulation of (3H)enkephalinamide (2-D-alanine-5-methioninamide) in rat brain tissues, Neuropharmacology 17: 1075–1079, 1978.PubMedCrossRefGoogle Scholar
  42. 42.
    Greenberg, R., and E.H. O’Keefe, Thiorphan potentiation of stress-induced analgesia in the mouse, Life Sci 31: 1185–1188, 1982.PubMedCrossRefGoogle Scholar
  43. 43.
    Hersch, L.B., Reaction of opioid peptides with neutral endopeptidase (’enkephalinase’), J Neurochem 43: 487–493, 1984.CrossRefGoogle Scholar
  44. 44.
    Vaswani, KK., and GA. Tejwani, Food deprivation-induced changes in the level of opioid peptides in the pituitary and brain of rat, Life Sci 38: 197–201, 1986.PubMedCrossRefGoogle Scholar
  45. 45.
    Alfrey, A.C., G.R. LeGendre, and W.D. Kaehny, The dialysis encephalopathy syndrome: possible aluminum intoxication, N Engl J Med 294: 184–188, 1976.PubMedCrossRefGoogle Scholar
  46. 46.
    Perl, D.P., D.C. Gajdusek, R.M. Garruto, R.T. Vanagihara, and C. J. Gibbs, Jr., Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and Parkinsonism-dementia of Guam, Science 217: 1053–1055, 1982.PubMedCrossRefGoogle Scholar
  47. 47.
    Banks, WA., and A J. Kastin, Aluminum increases permeability of the blood-brain barrier to labelled DSIP and β-endorphin: possible implications for senile and dialysis dementia, Lancet ii: 1227–1229,1983.CrossRefGoogle Scholar
  48. 48.
    Banks, WA., and A.J. Kastin, Aluminum alters permeability of the blood-brain barrier to some non-peptides, Neuropharmacology 24: 407–412, 1985.PubMedCrossRefGoogle Scholar
  49. 49.
    Banks, WA., A.J. Kastin, and M.B. Fasold, Differential effect of aluminum on the blood-brain barrier transport of peptides, technetium, and albumin, J Pharmacol Exp Ther 244: 579–585, 1988.PubMedGoogle Scholar
  50. 50.
    Banks, WA., and A.J. Kastin, Inhibition of the brain to blood transport system for enkephalins and Tyr-MIF-1 in mice addicted or genetically predisposed to drinking ethanol, Alcohol 410: 53–57, 1989.CrossRefGoogle Scholar
  51. 51.
    Blum, K., S.FA. Elston, L. DeLallo, A.H. Briggs, and J.E. Wallace, Ethanol acceptance as a function of genotype amounts of brain [Met]-enkephalin, Proc Natl Acad Sci USA 80: 6510–6512, 1983.PubMedCrossRefGoogle Scholar
  52. 52.
    Schulz, R., M. Wuster, T. Duka, and A. Herz, Acute and chronic ethanol treatment changes endorphin levels in brain and pituitary, Psychopharmacology (Berlin) 68: 221–227, 1980.CrossRefGoogle Scholar
  53. 53.
    Hong, J.S., E. Majchrowicz, WA. Hunt, and J.C. Gillin, Reduction in cerebral methionine-enkephalin content during the ethanol withdrawal syndrome, Subst Alcohol Actions Misuse 2: 233–240, 1981.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • William A. Banks
    • 1
  • Abba J. Kastin
    • 1
  1. 1.Veterans Administration Medical Center and Tulane University School of MedicineNew OrleansUSA

Personalised recommendations