Skip to main content

Abstract

The burgeoning field of neuroimmunology currently emphasizes a brain-immune link represented by hormones, neurotransmitters, neuropeptides, cytokines (1) and other substances of the CNS which are shared in common with the immune system and can act either directly or indirectly on components of the immune system or their target tissues. This concept essentially depicts the CNS as having an efferent outflow of active principles to a variety of peripheral structures. Another concept of potential importance in the maintenance of a homeostatic brain-immune interaction is that of immunoneurology, whereby principles derived from peripheral sources feed back onto the CNS. In this sense, immune cells, their products and other related substances can be transported from their source via the blood stream to the CNS wherein they may access the internal milieu and can, therefore, be considered afferent to the CNS. This review describes studies on transport of immunogammaglobulins (IgG) and albumins into the CNS of rat, rabbit and guinea pig using several techniques: immunocytochemistry (ICC), colchicine administration, active immunization, induced experimental allergic encephalomyelitis (EAE), radioisotope labeling, enzyme-linked immunosorbent assay (ELISA), rocket Immunoelectrophoresis and an in situ vascular brain perfusion method. Results from these studies reveal that serum albumin and globulin can enter the brain via several routes including that of active neuronal uptake by nerve endings, and subsequent transport to their cell bodies of origin via retrograde transport. These compounds may also enter the brain at circumventricular regions wherein functional leaks occur. Finally, there appears to be a saturable transport mechanism for IgG that is used to traverse the blood-brain barrier (BBB) and gain direct entry into the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dinarello, C.A., and J.W. Mier, Current concepts -lymphokines,N Engl J Med317: 940–945, 1987.

    PubMed  CAS  Google Scholar 

  2. Nandy, K., Immune reactions in aging brain and senile dementia, In K. Nandy and I. Sherwin (eds)The Aging Brain and Senile Dementia, Advances in Behavioral Biology, Volume 23, Plenum Press, New York, pp. 181–196, 1977.

    Google Scholar 

  3. Nandy, K., Brain-reactive antibodies in aging and senile dementia, In R. Katzman, R. Terry, K. Bick (eds)Alzheimer’s Disease-Senile Dementia and Related Disorder, Raven Press, New York, pp. 503–512, 1978.

    Google Scholar 

  4. Neuwelt, E.A., and W.K. Clark, Unique aspects of the immunology of the central nervous system, InClinical Aspects of Neuroimmunology, Waverly Press, Baltimore, pp. 39–72, 1978.

    Google Scholar 

  5. Leibowitz, S., and R.A.C. Hughes, Immunology and the blood-brain barrier, InImmunology of the Nervous System, Edward Arnold, Ltd., London, pp. 1–19, 1983.

    Google Scholar 

  6. Bradbury, M.W., Transport across the blood-brain barrier, In E.A. Neuwelt (ed)Implication of the Blood-Brain Barrier and Its Manipulation, Volume I, Plenum Medical Book Company, New York, pp. 119–136, 1989.

    Google Scholar 

  7. Broadwell, R.D., and M. Salcman, Expanding the definition of the blood-brain barrier to protein,Proc Natl Acad Sci USA78: 7820–7824, 1981.

    PubMed  CAS  Google Scholar 

  8. Broadwell, R.D., B.J. Balin, and M. Salcman, Transcytotic pathway for blood-borne protein through the blood-brain barrier,Proc Natl Acad Sci USA85: 632–636, 1988.

    PubMed  CAS  Google Scholar 

  9. Broadwell, R.D., B.J. Balin, M. Salcman, and R.S. Kaplan, Brain-blood barrier? Yes and no,Proc Natl Acad Sci USA80: 7352–7356, 1983.

    PubMed  CAS  Google Scholar 

  10. Oldendorf, W.H., Permeability of the blood-brain barrier, In D.B. Tower, R.O. Brady, D.P. Purpura, C.D. Clemente, W.M. Landau, and S.E. Mayer SE (eds)The Nervous System, Volume 1, Raven Press, New York, pp. 279–89, 1975.

    Google Scholar 

  11. Blatteis, C.M., N. Quan, and R.D. Howell, The Organum vasculosum laminae terminalis (OVLT) is critical for fever induced in guinea pigs by blood-borne cytokines,Soc Neurosci Abstr15: 718, 1989.

    Google Scholar 

  12. Brightman, M.W., and T.S. Reese, Junctions between intimately apposed cell membranes in the vertebrate brain, JCell Biol40: 648–677, 1969.

    PubMed  CAS  Google Scholar 

  13. Blatteis, C.M., W.S. Hunter, J.M. Wright, RA. Ahokas, Q.J. Llanos, and T.A. Mashburn, Jr., Thermoregulatory responses of guinea pigs with anteroventral third ventricle lesions,Can J Physiol Pharmacol65: 1261–1266, 1987.

    PubMed  CAS  Google Scholar 

  14. Balin, B.J., R.D. Broadwell, M. Salcman, and M. El-Kalliny, Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat, and squirrel monkey, JComp Neurol251: 260–280, 1986.

    PubMed  CAS  Google Scholar 

  15. Broadwell, R.D., and M.W. Brightman, Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood, JComp Neurol166: 257–283, 1976.

    PubMed  CAS  Google Scholar 

  16. Broadwell, R.D., and M.W. Brightman, Cytochemistry of undamaged neurons transporting exogenous proteinin vivo, J Comp Neurol185: 31–73, 1979.

    PubMed  CAS  Google Scholar 

  17. Nilaver, G., H. Brem, and E.A. Zimmerman, Immunocytochemical localization of albumin in rat brain,Neurology32: A107, 1982.

    Google Scholar 

  18. Sparrow, J.R., Immunocytochemical localization of plasma protein in neuronal perikarya,Brain Res212: 159–163, 1981.

    PubMed  CAS  Google Scholar 

  19. Kozlowski, G.P., and W.L. Dees, Immunocytochemistry for LHRH neurons in the arcuate nucleus of the rat: fact or artifact? JHistochem Cytochem32:83–91, 1984.

    PubMed  CAS  Google Scholar 

  20. Meeker, M.L., R.B. Meeker, and J.N. Hayward, Accumulation of circulating endogenous and exogenous immunoglobulins by hypothalamic magnocellular neurons,Brain Res423: 45–55, 1987.

    PubMed  CAS  Google Scholar 

  21. Fabian, R.H., and G. Petroff, Intraneuronal IgG in the central nervous system: update by retrograde axonal transport,Neurology37: 1780–1784, 1987.

    PubMed  CAS  Google Scholar 

  22. Baker, H., and R.F. Spencer, Transneuronal transport of peroxidase-conjugated wheat germ agglutinin (WGA-HRP) from the olfactory epithelium to the brain of the adult rat,Exp Brain Res63:461–473,1986.

    PubMed  CAS  Google Scholar 

  23. Harrison, P.J., H. Hultborn, E. Jankowska, R. Katz, B. Storai, and D. Zytnicki, Labelling of interneurones by retrograde transsynaptic transport of horseradish peroxidase from motoneurones in rats and cats,Neurosci Lett45: 15–19, 1984.

    PubMed  CAS  Google Scholar 

  24. Ugolini, G., H.G.J.M. Kuypers, and A. Simmons, Retrograde transneuronal transfer of Herpes simplex virus type 1 (HSV 1) from motorneurons,Brain Res422: 242–256, 1987.

    PubMed  CAS  Google Scholar 

  25. Jones, E.G., and B.K. Hartman, Recent advances in neuroanatomical methodology,Ann Rev Neurosci1: 215–296, 1978.

    PubMed  CAS  Google Scholar 

  26. Reiber, H., A.J. Suckling, and M.G. Rumsby, The effect of Freund’s adjuvants on blood-cerebrospinal fluid barrier permeability, JNeurol Sci63: 55–61, 1984.

    PubMed  CAS  Google Scholar 

  27. Kozlowski, G.P., and G. Nilaver, Immunoelectron microscopy of neuropeptides: theoretical and technical considerations, In J.L. Barker and J.F. McKelvy (eds)Current Methods in Cellular Neurobiology, John Wiley and Sons, Inc., New York, pp. 133–174, 1983.

    Google Scholar 

  28. Peress, N.S., J. Siegelman, and H.B. Fleit, High avidity periventricular IgG-Fc receptor activity in human and rabbit brain,Clin Immunol Immunopath 42: 229–238, 1987.

    CAS  Google Scholar 

  29. Segal, M.B., and B.V. Zlokovič,The Blood-Brain Barrier, Amino Acids and Peptides, Kluwer Academic Publishers, London, pp. 1–11, 1989.

    Google Scholar 

  30. Reese, T.S., and M.J. Karnovsky, Fine structural localization of a blood-brain barrier to exogenous peroxidase, JCell Biol34: 207–217, 1967.

    PubMed  CAS  Google Scholar 

  31. Broadwell, R., A. Wolf, and M. Tangoren, Transcytosis of blood-borne ferrotransferrin and insulin through the blood-brain barrier,Soc Neurosci Abstr15: 821, 1989.

    Google Scholar 

  32. Pardridge, W.M., Receptor-mediated peptide transport through the blood-brain barrier,Endocr Review7: 314–330, 1986.

    CAS  Google Scholar 

  33. Pardridge, W.M., Recent advances in blood-brain barrier transport,Ann Rev Pharmacol Toxicol28: 25–39, 1988.

    CAS  Google Scholar 

  34. Zlokovič, B.V., V.T. Susic, H. Davson, DJ. Begley, R.M. Jankov, D.M. Mitrovič, and M.N. Lipovac, Saturable mechanism for delta-sleep-inducing peptide (DSIP) at the blood-brain barrier of the vascularly perfused guinea-pig brain,Peptides10: 249–254, 1989.

    PubMed  Google Scholar 

  35. Zlokovič, B.V.,In vivoapproaches for studying peptide interactions at the blood-brain barrier, JControl Rel, In Press.

    Google Scholar 

  36. Zlokovič, B.V., J.B. Mackič, B. Djuricič, and H. Davson, Kinetic analysis of leucine-enkephalin cellular uptake at the luminal side of the blood-brain barrier of anin situperfused guinea-pig brain, JNeurochem, 53: 1333–1340, 1989.

    PubMed  Google Scholar 

  37. Kozlowski, G.P., and G. Nilaver, Structural and functional relationships between the immune and central nervous systems in Alzheimer’s Disease,Drug Dev Res15: 129–142, 1988.

    Google Scholar 

  38. Zlokovič, B.V., D.J. Begley, B.M. Djuricič, and D.M. Mitrovič, Measurement of solute transport across the blood-brain barrier in the perfused guinea-pig brain: method and application of N-methyl-alphaaminoisobutric acid, JNeurochem46: 1444–1451, 1986.

    PubMed  Google Scholar 

  39. Zlokovič, B.V., D.S. Skundric, M.B. Segal, M.N. Lipovac, J.B. Mackič, and H. Davson, A saturable mechanism for transport of immunoglobulin G across the blood-brain barrier of the guinea-pig,Exp Neurol, In Press.

    Google Scholar 

  40. Zlokovič, B.V., D.S. Skundric, M.B. Segal, J. Colover, R.M. Jankov, N. Pejnovič, V. Lackovič, J.B. Mackič, M.N. Lipovac, H. Davson, E. Kasp, D. Dummonde, and L.J. Lackovič, Blood-brain barrier permeability changes during acute allergic encephalomyelitis induced in the guinea-pig,Metab Brain Dis4: 33–40, 1989.

    PubMed  Google Scholar 

  41. Erlendsson, K., T. Swartz, and J.M. Dwyer, Successful reversal of echo virus encephalitis in x-linked hypogammaglobulinemia by intraventricular administration of immunoglobulin,N Engl J Med312: 351–353, 1985.

    PubMed  CAS  Google Scholar 

  42. Keenan, A.M., J.C. Harbert, and S.M. Larson, Monoclonal antibodies in nuclear medicine, JNucl Med26: 531–537, 1985.

    PubMed  CAS  Google Scholar 

  43. Colover, J., Acute demyelination in EAE after pretreatment with foreign protein and muramyl dipeptide (MDP),In A.R.Liss (ed)ExperimentalAllergic Encephalomyelitis: A Useful Model for Multiple Sclerosis, Alan R. Liss, New York, pp. 37–41, 1984.

    Google Scholar 

  44. Pardridge, W.M., J. Eisenberg, and J. Yang, Human blood-brain barrier insulin receptor, JNeurochem44: 1771–1778, 1985.

    PubMed  CAS  Google Scholar 

  45. Frank, H.J.L., W.M. Pardridge, W.L. Morris, R.G. Rosenfeld, and T.B. Choi, Binding and internalization of insulin and insulin-like growth factors by isolated brain microvessels,Diabetes35: 654–661, 1986.

    PubMed  CAS  Google Scholar 

  46. Kumagai, A.K., J.B. Eisenberg, and W.M. Pardridge, Absorptive-mediated endocytosis of cationized albumin and a β-endorphin-cationized albumin chimeric peptides by isolated brain capillaries. Model system of blood-brain transport, JBiol Chem262: 15214–15219, 1987.

    PubMed  CAS  Google Scholar 

  47. Pardridge, W.M., J. Eisenberg, and J. Yang, Human blood-brain barrier transferrin receptor,Metabolism Clin Exper36: 892–895, 1987.

    CAS  Google Scholar 

  48. Triguero, D., J.B. Buciak, J. Yang, and W.M. Pardridge, Blood-brain barrier transport of cationized immunoglobulin G: Enhanced delivery compared to native protein,Proc Natl Acad Sci USA86, 4761–4765, 1989.

    PubMed  CAS  Google Scholar 

  49. Zlokovič, B.V., D.J. Begley, M.B. Segal, H. Davson, L.J. Rakič, M.N. Lipovac, D.M. Mitrovič, and R.M. Jankov, Neuropeptide transport mechanisms in the central nervous system, In L.J. Rakič, D.J. Begley, H. Davson, and B.V. Zlokovič (eds)Peptide and Amino Acid Transport Mechanisms in the Central Nervous System, Macmillan Press Ltd, London, pp. 3–21, 1988.

    Google Scholar 

  50. Zlokovič, B.V., M.N. Lipovac, D.J. Begley, H. Davson, and L. Rakič, Transport of leucin-enkephalin across the blood-brain barrier in the perfused guinea-pig brain, JNeurochem49: 310–315, 1987.

    PubMed  Google Scholar 

  51. Zlokovič, B.V., M.B. Segal, H. Davson, and D.M. Mihovič, Unidirectional uptake of enkephalins at the blood-tissue interface of the blood-cerebrospinal fluid barrier: a saturable mechanism,Regul Peptides20: 33–44, 1988.

    Google Scholar 

  52. Zlokovič, B.V., M.B. Segal, H. Davson, and R.M. Jankov, Passage of delta-sleep-inducing peptide (DSIP) across the blood-cerebrospinal fluid barrier,Peptides9: 533–538, 1988.

    PubMed  Google Scholar 

  53. Colover, J., A new pattern of spinal-cord demyelination in guinea pigs with acute experimental allergic encephalomyelitis mimicking multiple sclerosis,Br I Exp Biol Pathol61: 390–400, 1980.

    CAS  Google Scholar 

  54. Colover, J., and A. Qureshi Myelin debris in demyelinating process: a disease activity marker? In C. Confavreux, G. Aimard, and M. Devič (eds)Trends in European Multiple Sclerosis Research, Elsevier, London, pp. 229–234, 1988.

    Google Scholar 

  55. Wekerle, H., C. Linnington, H. Lassmann, and R. Meyerman, Cellular immune reactivity within the CNS,Trends in Neurosci9: 271–277, 1986.

    Google Scholar 

  56. Fontana, A., Astrocytes and lymphocytes: intercellular communication by growth factors, JNeurosci Res8: 443–451, 1982.

    PubMed  CAS  Google Scholar 

  57. Lampson, L.A., and W.F. Hickey, Monoclonal antibody analysis of MHC expression in human brain biopsies: tissues ranging from “histologically normal” to that showing different levels of glial tumor involvement,J Immunol136: 4054–4062, 1986.

    PubMed  CAS  Google Scholar 

  58. Luber-Narod, J., and J. Rogers, Immune system associated antigens expressed by cells of the human central nervous system,Neurosci Lett94: 17–22, 1988.

    PubMed  CAS  Google Scholar 

  59. McCarron, R.M., O. Kempski, M. Spatz, and D.E. McFarlin, Presentation of myelin basic protein by murine cerebral vascular endothelial cells, JImmunol134: 3100–3103, 1985.

    PubMed  CAS  Google Scholar 

  60. Leibowitz, S., and R.A.C. Hughes, The immune response in the central nervous system, InImmunology of the Nervous System, Edward Arnold, Ltd., London, pp. 20–40, 1983.

    Google Scholar 

  61. Wong, G.H.W., P.F. Bartlett, I. Clark-Lewis, J.L. McKimm-Breschkin, and J.W. Schrader, Interferon-λ induces the expression of H-2 and Ia antigens on brain cells, JNeuroimmunol7: 255–278, 1985.

    PubMed  CAS  Google Scholar 

  62. Massa, P.T., R. Dorries, ter Muelen, Viral particles induce Ia antigen expression on astrocytes,Nature320: 543–546, 1986.

    PubMed  CAS  Google Scholar 

  63. Sotelo, J., C.J. Gibbs, Jr., and D.C. Gajdusek, Autoantibodies against axonal neurofilaments in patients with kuru and Creuetzfeld-Jacob disease,Science210: 190–193, 1980.

    PubMed  CAS  Google Scholar 

  64. Antoniou, A.V., H. El-Sady, C. Butler, and J.L. Turk, The modulation of class II histocompatibility antigens and activated macrophage determinants in the spinal cord during the development of chronic relapsing experimental allergic encephalomyelitis (CREAE) in the guinea pig -relevance to the induction of remission, JNeuroimmunol15: 57–71, 1987.

    PubMed  CAS  Google Scholar 

  65. Matsumoto, Y., N. Hara, R. Tanaka, M. Fugiwara, Immunohistochemical analysis of rat central nervous system during experimental allergic encephalomyelitis, with special reference to Ia-positive cells with dendritic morphology, JImmunol136: 3668–3676, 1986.

    PubMed  CAS  Google Scholar 

  66. Neuwelt, E.A., and W.K. Clark, The immunology of demyelinating disease, InClinical Aspects of Neuroimmunology, Waverly Press, Baltimore, pp. 233–72, 1978.

    Google Scholar 

  67. Chou, C.H.J., F.C.H. Chou, W.W. Tourtellotte, and R.F. Kibler, Search for a multiple sclerosis specific brain antigen,Neurology33: 1300–1304, 1983.

    PubMed  CAS  Google Scholar 

  68. Gannuszkina, I.W., H. Weinrauder, and I.G. Zirnowa, Use of the immunofluorescence and immunodiffusion methods for the detection of anti-brain antibodies in sera of patients with central nervous system diseases,Neurpath Pol21: 183–190, 1983.

    CAS  Google Scholar 

  69. Johnson, A.B., and M.B. Bornstein, Myelin binding antibodiesin vitro: immunoperoxidase studies with experimental allergic encephalomyelitis, anti-galactocerebroside and multiple sclerosis sera,Brain Res159: 173–182, 1978.

    PubMed  CAS  Google Scholar 

  70. Lisak, R.P., R.G. Heinze,G.A. Falk, and M.W. Keis, Search for antiencephalitogen antibodies in human demyelinating diseases,Neurology18: 122–128, 1968.

    PubMed  CAS  Google Scholar 

  71. Paterson, P.Y., Autoimmune neurologic disease: experimental animal systems and implications for multiple sclerosis, In N. Talal (ed)Autoimmunity. Genetic Immunologic Virologic and Clinical Aspects, Academic Press, New York, pp. 643–707, 1977.

    Google Scholar 

  72. Rostrom, B., Specificity of antibodies in oligoclonal bands in patients with multiple sclerosis and cerebrovascular disease,Acta Neurol Scand63 [Suppl 86]: 10–84, 1981.

    Google Scholar 

  73. Wisniewski, H.M., Immunopathology of demyelination and autoimmune disease and virus infections,Brit Med Bull33: 54–59, 1977.

    PubMed  CAS  Google Scholar 

  74. Arnason, B.G.W., Clinical immunology, In D.B.Tower, T.N. Chase, A.L. Sahs, P.R. Dodge, H.L. Heyl, R.J. Joynt, E.S. Goldenshon, R. DeJong, and A. Pope (eds)The Nervous System, Volume 2, Raven Press, New York, pp. 61–66, 1975.

    Google Scholar 

  75. Dean, G., The multiple sclerosis problem,Sci Amer223: 40–46, 1970.

    PubMed  CAS  Google Scholar 

  76. Lisak, R.P., B. Zweiman, J.B. Burns, A. Rostami, and D.H. Silberberg, Immune responses to myelin antigens in multiple sclerosis,Ann NY Acad Sci436: 221–232, 1984.

    PubMed  CAS  Google Scholar 

  77. Lisak, R.P., and B. Zweiman,In vitrocell-mediated immunity of cerebrospinal fluid lymphocytes to myelin basic protein in primary demyelinating diseases,New Eng J Med297: 850–853, 1977.

    PubMed  CAS  Google Scholar 

  78. Lisak, R.P., B. Zweiman, D. Waters, H. Koprowski, and D.E. Pleasure, Cell-mediated immunity to measles, myelin basic protein and central nervous system extract in multiple sclerosis: a longitudinal study employing direct buffy coat migration assays,Neurology28: 798–803, 1978.

    PubMed  CAS  Google Scholar 

  79. Lisak, R.P., B. Zweiman, and J.N. Whitaker, Spinal fluid basic protein immunoreactive material and spinal fluid lymphocyte reactivity to basic protein,Neurology31: 180–182, 1981.

    PubMed  CAS  Google Scholar 

  80. Fujinami, R.S., and M.B.A. Oldstone, Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanisms for autoimmunity,Science230: 1043–1045, 1985.

    PubMed  CAS  Google Scholar 

  81. Fraser, K.B., Population serology, In A.N. Davison, J.H. Humphrey, A.L. Liversedge, W.I. McDonald, and J.S. Porterfield, (eds)Multiple Sclerosis Research, Elsevier, New York, pp. 53–79, 1975.

    Google Scholar 

  82. Petz, L.D., G.C. Sharp, N.R. Cooper, and W.S. Irvin, Serum and cerebrospinal fluid complement and serum autoantibodies in systemic lupus erythematosus,Medicine(Baltimore) 50: 259–275, 1971.

    CAS  Google Scholar 

  83. Rostagi, S.C., J. Clausen, H. Offner, G. Konat, and T. Fog, Partial purification of MS brain-specific antigen,Acta Neurol Scand59: 281–296, 1979.

    Google Scholar 

  84. Mulles, K.B., and FA. Faloona, Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction,Meth Enzymol155: 335, 1987.

    Google Scholar 

  85. Saikai, R.K., D.H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis, and HA. Erlich, Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase,Science239: 487–491, 1988.

    Google Scholar 

  86. Duggan, D.B., G.D. Ehrhch, F.P. Davey, S. Kwok, J. Sninsky, J. Goldberg, L. Baltrucki, and B.J. Poiesz, HTLV-1 induced lymphoma mimicking Hodgkin’s disease. Diagnosis by polymerase chain reaction amplification of specific HTLV-1 sequences in tumor DNA,Blood71: 1027–1032, 1988.

    PubMed  CAS  Google Scholar 

  87. Manzari, V., A. Gismondi, G. Barellari, S. Morrone, A. Modesti, L. Albonici, L. de Marchis, V. Fazio, A. Gradilone, M. Zani, L. Frati, and A. Santoni, HTLV-V: a new human retrovirus isolated in a tacnegative T-cell lymphoma/leukemia,Science238: 1581–1583, 1987.

    PubMed  CAS  Google Scholar 

  88. Resnick, L., J.R. Berger, P. Shapshak, and W.W. Tourtellotte, Early penetration of the blood-brain-barrier by HIV,Neurology38: 9–14, 1988.

    PubMed  CAS  Google Scholar 

  89. Koprowski, H., E.C. de Freitas, M.E. Harper, M. Sandberg-Wollheim, WA. Sheremata, M. Robert-Guroff, C.W. Saxinger, M.B. Feinberg, F. Wong-Staal, and R.C. Gallo, Multiple sclerosis and human T-cell lymphotropic retroviruses,Nature318: 154–160, 1985.

    PubMed  CAS  Google Scholar 

  90. Reddy, E.P., M. Sandberg-Woelheim, R.V. Meltus, P.E. Ray, E. deFreitas, and H. Koprowski, Amplification and molecular cloning of HTLV-I sequences from DNA of multiple sclerosis patients,Science243: 529–533, 1989.

    PubMed  CAS  Google Scholar 

  91. Greenberg, S.J., G.D. Ehrlich, M.A. Abbott, BJ. Hurwitz, TA. Waldmann, and B.J. Poiesz, Detection of sequences homologous to human retroviral DNA in multiple sclerosis by gene amplification,Proc Natl Acad Sci USA86: 2878–2882, 1989.

    PubMed  CAS  Google Scholar 

  92. Fraser, K.B., Multiple Sclerosis, a viral disease?Brit Med Bull33: 34–39, 1977.

    PubMed  CAS  Google Scholar 

  93. Johnson, R.T., Virological data supporting the viral hypothesis in multiple sclerosis, In A.N. Davison, J.H. Humphrey, A.L. Liversedge, W.I. McDonald, and J.S. Porterfield, (eds)Multiple Sclerosis Research, Elsevier, New York, pp. 155–183, 1975.

    Google Scholar 

  94. Höcker, P., V. Stellamor, K. Summer, and M. Mann, Plasma exchange (PE) and lymphocytapheresis (LCA) in multiple sclerosis (MS),Int J Artif Organs7: 39–42, 1984.

    PubMed  Google Scholar 

  95. Khatri, B.O., S.M. Koethe, and M.P. McQuillen, Plasmapheresis with immunosuppressive drug therapy in progressive multiple sclerosis: a pilot study,Arch Neurol41: 734–738, 1984.

    PubMed  CAS  Google Scholar 

  96. Khatri, B.O., M.P. McQuillen, G.J. Harrington, D. Schmoll, and R.G. Hoffman, Chronic progressive multiple sclerosis: double-blind controlled study of plasmapheresis in patients taking immunosuppressive drugs,Neurology35: 312–319, 1985.

    PubMed  CAS  Google Scholar 

  97. Ghezzi, A., M. Zaffaroni, D. Caputo, R. Guaschino, P. Gasco, R. Montanini, and C.L. Cazzullo, Lymphocytoplasmapheresis in multiple sclerosis: preliminary laboratory findings,Ital J NeurolSci 6: 85–87, 1985.

    PubMed  CAS  Google Scholar 

  98. Hauser, S.L., M. Fosberg, S.V. Kevy, and H.L. Weiner, Lymphocytopheresis in chronic progressive multiple sclerosis: immunologic and clinical effects,Neurology34: 922–926, 1984.

    PubMed  CAS  Google Scholar 

  99. Tindall, R.S.A., J.E. Walker, A.L. Ehle, L. Near, J. Rollins, and D. Becker, Plasmapheresis in multiple sclerosis: prospective trial of pheresis and immunosuppression versus immunosuppression alone,Neurology32: 739–743, 1982.

    PubMed  CAS  Google Scholar 

  100. Cook, S.D., C. Devereux, R. Troiano, M.P. Hafstein, G. Zito, E. Hernandy, M. Larvenhar, R. Vidaver, and P.C. Dowling, Effect of total lymphoid irradiation in chronic progressive multiple sclerosis,Lancet1: 1405–1409, 1986.

    PubMed  CAS  Google Scholar 

  101. Gebhart, W., S. Schuller-Petrovic, H. Lassmann, and D. Kraft, NK cells and the nervous system,Wein Klin Wochenschr95: 828–831, 1983.

    CAS  Google Scholar 

  102. Brain, L., and M. Wilkinson, Subacute cerebellar degeneration associated with neoplasms,Brain88: 465–478, 1965.

    PubMed  CAS  Google Scholar 

  103. Greenlee, J.E., and H.R. Brashear, Antibodies to cerebellar Purkinje cells in patients with paraneoplastic cerebellar degeneration and ovarian carcinoma,Ann Neurol14: 609–613, 1983.

    PubMed  CAS  Google Scholar 

  104. Jaeckle, K.A., F. Graus, A. Houghton, C. Cordon-Cardo, S.L. Nielsen, and J.B. Posner, Autoimmune response of patients with paraneoplastic cerebellar degeneration to a Purkinje cell cytoplasmic antigen,Ann Neurol18: 592–600, 1985.

    PubMed  CAS  Google Scholar 

  105. Kearsley, J.H., P. Johnson, and M. Halmagyi, Paraneoplastic cerebellar disease: remission with excision of the primary tumor,Arch Neurol42: 1208–1210, 1985.

    PubMed  CAS  Google Scholar 

  106. Cunningham, J., F. Graus, N. Anderson, and J.B. Posner, Partial characterization of Purkinje cell antigens in paraneoplastic cerebellar degeneration,Neurology36: 1163–1168, 1986.

    PubMed  CAS  Google Scholar 

  107. Brain, W.R., P.M. Daniel, and J.G. Greenfield, Subacute cortical cerebellar degeneration and its relation to carcinoma, JNeurol Neurosurg Psych14: 59–75, 1951.

    CAS  Google Scholar 

  108. Henson, RA., and H. Urich, Remote effects of malignant disease: certain intracranial disorders, In P.J. Vinken, G.W. Bruyn, and H.L. Klawans (eds)Handbook of Clinical Neurology, Volume 38, North-Holland Publishing, Amsterdam, pp. 625–668, 1979.

    Google Scholar 

  109. Hammack, J.E., D.W. Kimmel, B.P. O’Neill, and VA. Lennon, Comparison of patients with paraneoplastic cerebellar degeneration (PCD) who are seropositive and seronegative for Purkinje cell cytoplasmic antibodies (PCAb),Neurology38 [Suppl 1]: 127, 1988.

    Google Scholar 

  110. Jaeckle, K.A., and J.E. Greenlee, Immunohistochemical patterns of antibody response in paraneoplastic neurological syndromes correlate with specific syndromes and with tumor types,Ann Neurol24: 121, 1988.

    Google Scholar 

  111. Smith, J.L., J.C. Finley, and VA. Lennon, Autoantibodies in paraneoplastic cerebellar degeneration bind to cytoplasmic antigens of Purkinje cells in humans, rats, and mice and are of multiple immunoglobulin classes, JNeuroimmunol18: 37–48, 1988.

    PubMed  CAS  Google Scholar 

  112. Anderson, N., M.K. Rosenbaum, and J.B. Posner, Paraneoplastic cerebellar degeneration: clinical-immunological correlations,Ann Neurol24: 559–567, 1988.

    PubMed  CAS  Google Scholar 

  113. Paone, J.F., and K. Jeyasingham, Remission of cerebellar dysfunction after pneumonectomy for bronchogenic carcinoma,New Eng J Med302: 156,1980.

    PubMed  CAS  Google Scholar 

  114. Cocconi, G., G. Leci, G. Juvarra, M.R. Monopoli, T. Cocchi, F. Fraccadori, A. Lechi, and P. Boni, Successful treatment of subacute cerebellar degeneration in ovarian carcinoma with plasmapheresis: a case report,Cancer56: 2318–2320, 1985.

    PubMed  CAS  Google Scholar 

  115. Dropcho, E.J., Y.T. Chen, J.B. Posner, and L.J. Old, Cloning of a brain protein identified by autoantibodies from a patient with paraneoplastic cerebellar degeneration,Proc Natl Acad Sci USA84: 4552–4556, 1987.

    PubMed  CAS  Google Scholar 

  116. Furneaux, H.M., E.J. Dropcho, D. Barbut, Y.T. Chen, M.K. Rosenblum, L.J. Old, and J.B. Posner, Characterization of a cDNA encoding a 34-kDa Purkinje neuron protein recognized by sera from patients with paraneoplastic cerebellar degeneration,Proc Natl Acad Sci USA86: 2873–2877, 1989.

    PubMed  CAS  Google Scholar 

  117. Borges, L.F., P.J. Elliot, R. Gill, S.D. Iversen, and L.L. Iversen, Selective extraction of small and large molecules from the cerebrospinal fluid by Purkinje neurons,Science 228: 346–348, 1985.

    PubMed  CAS  Google Scholar 

  118. Jaeckle, K.A., W.G. Stroop, J.E. Greenlee, M. Price, and Q.S. Deng, Intraventricular injection of paraneoplastic anti-Purkinje cell antibody in a rat model,Neurology36: 332, 1986.

    Google Scholar 

  119. Wisniewski, H.M., and R.D. Terry, Neuropathology of the aging brain, In R.D. Terry and S. Gershon (eds)Neurobiology of Aging, Raven Press, New York, pp. 265–280, 1976.

    Google Scholar 

  120. Ishii, T., S. Haga, and F. Shimizu, Identification of components of immunoglobulins in senile plaques by means of fluorescent technique,Acta Neuropath32: 157–162, 1975.

    PubMed  CAS  Google Scholar 

  121. Eikelenboom, P., and F.C. Stam, Immunoglobulins and complement factors in senile plaques,Acta Neuropathol57: 239–242, 1982.

    PubMed  CAS  Google Scholar 

  122. Ishii, T., and S. Haga, Immunoelectron microscopic localization of complements in amyloid fibrils of senile plaques,Acta Neuropathol63: 296–300, 1984.

    PubMed  CAS  Google Scholar 

  123. Schechter, R., S.H.C. Yen, and R.D. Terry, Fibrous astrocytes in senile dementia of Alzheimer type, JNeuropath Exp Neurol40: 95–101, 1981.

    PubMed  CAS  Google Scholar 

  124. Hildemann, W.H.,Essentials of Immunology, Elsevier, New York, pp. 114, 1984.

    Google Scholar 

  125. Elovaara, I., A. Icen, J. Palo, and T. Erkinjuntti, CSF in Alzheimer’s disease. Studies on blood-brain barrier function and intrathecal protein synthesis, JNeurol Sci70: 73–80, 1985.

    PubMed  CAS  Google Scholar 

  126. Elovaara, I., J. Palo, T. Erkinjuntti, and R. Sulkava, Serum and cerebrospinal fluid proteins and the blood-brain barrier in Alzheimer’s disease and multi-infarct dementia,Eur Neurol26: 229–234, 1987.

    PubMed  CAS  Google Scholar 

  127. Rogers, J., J. Luber-Narod, S.D. Styren, and W.H. Civin, Expression of immune system-associated antigens by cells of the human nervous system: relationship to pathology of Alzheimer’s disease,Neurobiol Aging9: 339–349, 1988.

    PubMed  CAS  Google Scholar 

  128. Della-Fera, M.A., and C.S. Baile, Cholecystokinin octapeptide: continuous picomole injections into the cerebral ventricles of sheep suppress feeding,Science206: 471–473, 1979.

    PubMed  CAS  Google Scholar 

  129. Lind, R.W., L.W. Swanson, and D. Ganten, Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. An immunohistochemical study,Neuroendocrinology40: 2–24, 1985.

    PubMed  CAS  Google Scholar 

  130. Saper, C.B., D.G. Standaert, M.G. Currie, D. Schwartz, D.M. Geller, and P. Needleman, Atriopeptin-immunoreactive neurons in the brain: presence in cardiovascular regulatory areas,Science227: 1047–1049, 1985.

    PubMed  CAS  Google Scholar 

  131. Breder, C.D., CA. Dinarello, and C.B. Saper, Interleukin-1 immunoreactive innervation of the human hypothalamus,Science240: 321–234, 1988.

    PubMed  CAS  Google Scholar 

  132. Bernton, E.W., J.E. Beach, J.W. Holaday, R.C. Smallridge, and H.G. Fein, Release of multiple hormones by a direct action of interleukin-1 on pituitary cells,Science238: 519–521, 1987.

    PubMed  CAS  Google Scholar 

  133. Pardridge, W.M., Carrier-mediated transport of thyroid hormone through the rat blood-brain-barrier. Primary role of albumin-bound hormones,Endocrinology105: 605–612, 1979.

    PubMed  CAS  Google Scholar 

  134. Pardridge, W.M., and L.J. Meitus, Transport of steroid hormone through the rat blood-brain-barrier: primary role of albumin-bound hormones, JClin Invest64: 145–154, 1979.

    PubMed  CAS  Google Scholar 

  135. Kozlowski, G.P., Hormone pathways in cerebrospinal fluid, In E.A. Zimmerman and G. Abrams (eds)Neurologic Clinics: Neuroendocrinology and Brain Peptides, W.B. Saunders, Philadelphia, pp. 907–917, 1986.

    Google Scholar 

  136. Kozlowski, G.P., Ventricular route hypothesis and peptide-containing structures of the cerebroventricular system, In T.B. van Wimersma Greidanus (ed)Frontiers of Hormone Research, Volume9, S. Karger, Basel, pp. 105–118, 1982.

    Google Scholar 

  137. Hunter, W.M., and F.C. Greenwood, Preparation of 131 labelled human growth hormone of high specific activity,Nature194: 495–496, 1962.

    PubMed  CAS  Google Scholar 

  138. Rettori, V., J. Jurčovčová, and S.M. McCann, Central action of interleukin-1 in altering the release of TSH, growth hormone, and prolactin in the male rat, JNeurosci Res18: 179–183, 1987.

    PubMed  CAS  Google Scholar 

  139. Uehara, A., S. Gillis, and A. Arimura, Effects of interleukin-1 on hormone release from normal rat pituitary cells in primary culture,Neuroendocrinology45: 343–347, 1987.

    PubMed  CAS  Google Scholar 

  140. Katsuura, G., and A. Arimura, Interleukin-lβ, Messenger of the immune signal to the neuroendocrine system, may act primarily on the hypothalamus: presence of its receptor in the hypothalamus, but not in the pituitary, of the rat,Enocrinology[Suppl] 122: 132, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Kozlowski, G.P., Nilaver, G., Zlokovič, B.V. (1990). Immunoneurology: A Serum Protein Afferent Limb to the CNS. In: Porter, J.C., Ježová, D. (eds) Circulating Regulatory Factors and Neuroendocrine Function. Advances in Experimental Medicine and Biology, vol 274. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5799-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5799-5_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5801-5

  • Online ISBN: 978-1-4684-5799-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics