Peripheral Neurohumoral Factors and Central Control of Homeostasis During Altered Sodium Intake

  • Greti Aguilera
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 274)


Altered sodium intake leads to activation of compensatory mechanisms to restore sodium balance and circulatory homeostasis through modulation of renal sodium and water transport, vascular tone and sodium appetite (1). The humoral, neural, and local factors involved and the sites at which regulation occurs are shown in Table 1. In addition, coordinated interaction between peripheral and central regulators is critical to obtain the appropriate level of response in the target tissue. Examples of this type of interaction are a) the modulatory effect of plasma potassium, atrial natriuretic peptide, and somatostatin on the adrenal sensitivity to angiotensin II (AII) (2), b) the regulatory effect of vasopressin on baroreflex sensitivity (3), and c) the modulatory effect of circulating factors such as AII and steroids on the central regulation of sympathetic activity (4,5). Mineralocorticoids from the zona glomerulosa of the adrenal have a major role in the control of sodium and water metabolism through its effects on sodium reabsorption at the distal tubule of the nephron. The main mineralocorticoid in man and other mammalian species is aldosterone. The secretion of aldosterone by the adrenal glomerulosa is controlled by a complex set of regulators which include peripheral and central components. In this discussion I shall focus on the regulation of aldosterone secretion and in particular the manner in which humoral and neural elements are coordinated.


Sodium Intake Plasma Aldosterone Atrial Natriuretic Factor Zona Glomerulosa Aldosterone Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reineck, HJ., and J.H. Stein, Control of sodium excretion, In S.G. Massry and R.J. Glassock (eds)Textbook of Nephrology, Volume 1, Part 2,Williams and Wilkins, Baltimore, pp. 3.12–3.21, 1983.Google Scholar
  2. 2.
    Aguilera, G., and KJ. Catt, Regulation of the sensitivity of the adrenal glomerulosa cell during altered sodium intake, In F. Mantero, E.G. Biglieri, J.W. Funder, and B.A. Scoggins (eds)The Adrenal Gland and Hypertension, Raven Press, New York, pp. 33–53, 1985.Google Scholar
  3. 3.
    Alexander, N., S. Melmed, and M. Morris, Suppressed serum prolactin in sinoaortic-denervated rats,Am J Physiol252: 290–293, 1987.Google Scholar
  4. 4.
    Simpson, J.B., The circumventricular organs and the central actions of angiotensin,Neuroendocrinology32: 248–256, 1981.PubMedCrossRefGoogle Scholar
  5. 5.
    Casto, R., and M.I. Phillips, Angiotensin II attenuates baroreflexes at nucleus tractus solitarius of rats,Am J Physiol250: R193–R198, 1986.PubMedGoogle Scholar
  6. 6.
    Aguilera, G., K. Fujita, A. Schirar, and KJ. Catt, Role of angiotensin II on the regulation of aldosterone secretion, In I.A. Cumming, J.W. Funder, and F.A.O. Mendelsohn (eds)Role of Endocrinology,Australian Academy of Science, Canberra, pp. 389–392, 1980.Google Scholar
  7. 7.
    Bojesen, E., Concentrations of aldosterone and corticosterone in peripheral plasma of rats. The effects of salt depletion, salt repletion, potassium loading and intravenous injections of renin and angiotensin II,Eur J Steroids1: 145–169, 1966.Google Scholar
  8. 8.
    Blair-West, J.R., J.P. Coghlan, DA. Denton, J.R. Goding, M. Wintour, and R.D. Wright, The control of aldosterone secretion,Rec ProgHorm Res19: 311–383, 1963.Google Scholar
  9. 9.
    Aguilera, G., and K.J. Catt, Regulation of aldosterone secretion during altered sodium intake, JSteroid Biochem19: 525–530, 1983.PubMedCrossRefGoogle Scholar
  10. 10.
    Boyd, G.W., A.R. Adamson, M. Arnold, V.H.T. James, and W.S. Peart, The Role of angiotensin II in the control of aldosterone in man,Clin Sci42: 91–104, 1972.PubMedGoogle Scholar
  11. 11.
    Blair-West, J.R., J.P. Coghlan, DA. Denton, and B.A. Scoggins, Aldosterone regulation in sodium deficiency: role of ionic factors and angiotensin II, In I.H. Page and F.M. Bumpus (eds)Angiotensin,Springer-Verlag, New York, pp. 337–368, 1974.Google Scholar
  12. 12.
    Lee, T.C., B. van der Val, and D. deWied, Influence of the anterior pituitary on aldosterone secretory response to dietary sodium restriction in the rat, JEndocrinol42: 465–475, 1968.PubMedCrossRefGoogle Scholar
  13. 13.
    Williams, G.H., L.I. Rose, R.G. Dluhy, J.F. Dingman, and D.P. Lauler, Aldosterone response to sodium restriction and ACTH stimulation in panhypopituitarism, JClin Endocrinol Metab32: 27–35, 1975.CrossRefGoogle Scholar
  14. 14.
    Douglas, J.G., Effects of high potassium diet on angioensin II receptors and angiotensin-induced aldosterone production in rat adrenal glomerulosa cells,Endocrinology106: 983–990, 1980.PubMedCrossRefGoogle Scholar
  15. 15.
    Boyd, J., L. Manuelidis, and P.J. Mulrow, The importance of potassium int he regulation of aldosterone biosynthesis, InProceedings IV International Congress of Endocrinology,Excerpta Medica, Washington, D.C., pp. 785–789, 1972.Google Scholar
  16. 16.
    Oelkers, W., M. Schöneshöfer, G. Shultze, JJ. Brown, R. Fraser, J.J. Morton, A.F. Lever, and J.I.S. Robertson, Effect of prolonged low-dose angiotensin II infusion on the sensitivity of adrenal cortex in man, Circ Res36:149–156, 1975.Google Scholar
  17. 17.
    Aguilera, G., FA.O. Mendelsohn, and K.J. Catt, Dopaminergic regulation of aldosterone secretion, In W.F. Ganong and L. Martini (eds)Frontiers in Neuroendocrinology, Volume 8,Raven Press, New York, pp. 265–291, 1984.Google Scholar
  18. 18.
    Sowers, J.R., M.L. Tuck, M.S. Golub, and E.G. Sollars, Dopaminergic modulation of aldosterone secretion is independent of alterations in renin secretion,Endocrinology107: 937–941, 1980.PubMedCrossRefGoogle Scholar
  19. 19.
    Carey, R.M., Acute dopaminergic inhibition of aldosterone secretion is independent of angiotensin II and adrenocorticotrophin, JClin Endocrinol Metab54: 463–469,1982.PubMedCrossRefGoogle Scholar
  20. 20.
    Gordon, M.B., T.J. Moore, R.G. Dluhy, and G.H. Williams, Dopaminergic modulation of aldosterone responsiveness to angiotensin II with changes in sodium intake, JClin Endocrinol Metab56: 340–345, 1983.PubMedCrossRefGoogle Scholar
  21. 21.
    Edwards, C.R.W., P.A. Miall, J.P. Hanker, M.O. Thorner, E.A.s. Al-Dujaili, and G.M. Besser, Inhibition of plasma aldosterone response to frusemide by bromocryptine,LancetII: 903–905, 1975.CrossRefGoogle Scholar
  22. 22.
    Carey, R.M, and G.R. Van Loon, Bromocryptine does not inhibit the aldosterone response to sodium depletion, JClin Endocrinol Metab55: 162–165,1982.PubMedCrossRefGoogle Scholar
  23. 23.
    Sower, J.R., R. Catania, J. Paris, and M. Tuck, Effects of bromocriptine on renin, aldosterone, and prolactin responses to posture and metoclopramide in idiopathic edema: possible therapeutic approach, JClin Endocrinol Metab54: 510–516, 1982.CrossRefGoogle Scholar
  24. 24.
    Drake, C.R., Jr., N.V. Ragsdale D.L. Kaiser, and R.M. Carey, Dopaminergic suppression of angiotensin II-induced aldosterone secretion in man: differential responses during sodium loading and depletion,Metabolism Clin Exper33: 696–702, 1984.CrossRefGoogle Scholar
  25. 25.
    Alexander, R.W., J.R. Gill, Jr., H. Yamabe, W. Lovenberg, and H.R. Haister, Effects of dietary sodium and of acute saline infusion on the interrelationship between dopamine excretion and adrenergic activity in man, JClin Invest54: 194–200, 1974.PubMedCrossRefGoogle Scholar
  26. 26.
    Faucheux, B., N.T. Buu, and O. Kuchel, Effects of saline and albumin on plasma and urinary catecholamines in dogs,Am J Physiol232: F123–F127, 1977.PubMedGoogle Scholar
  27. 27.
    Ball, S.G., N.S. Oates, and M.R. Lee, Urinary dopamine in man and rat: effects of inorganic salts on dopamine excretion,Clin Sci Mol Med55: 167–173, 1978.PubMedGoogle Scholar
  28. 28.
    Dunn, M.G., and H.B. Bosmann, Peripheral dopamine receptor identification: properties of a specific dopamine receptor in the rat adrenal zona glomerulosa,Biochem Biophys Res Commun99: 1081–1087, 1981.PubMedCrossRefGoogle Scholar
  29. 29.
    Bevilacqua, M., T. Vago, D. Scorza, and G. Norbiato, Characterization of dopamine receptors by 3H-ADTN binding in calf adrenal zona glomerulosa,Biochem Biophys Res Comm108:1661–1669,1982.PubMedCrossRefGoogle Scholar
  30. 30.
    McKenna, T.J., D.P. Island, W.E. Nicholson, and G.W. Liddle, Dopamine inhibits angiotensin stimulated aldosterone biosynthesis in bovine adrenal cells, JClin Invest64: 287–291, 1979.PubMedCrossRefGoogle Scholar
  31. 31.
    Racz, K., A. Deléan, O. Kuchel, and N.T. Buu, Adrenomedullary mechanisms in aldosterone regulation, In F. Mantero and P. Vecsei (eds)Serono Symposium Publication (title),Raven Press, Volume 39, pp. 77–90, 1987.Google Scholar
  32. 32.
    Wakabayashi, I., Y. Miyazawa, M. Kanda, N. Miki, R. Demuro H. Demura and K. Shizume, Stimulation of immunoreactive somatostatin release from hypothalamic synaptosomes by high (K+) and dopamine,Endocrinol Jpn24: 601–604, 1977.PubMedCrossRefGoogle Scholar
  33. 33.
    Carey, R.M., and S. Sen, Recent progress in the control of aldosterone secretion, In R.O. Greep (ed)Rec Prog Horm Res42: 251–296, 1986.Google Scholar
  34. 34.
    Vinson, G.P., B.J. Whitehouse, A. Dell, T. Etienne, and H.R. Morris, Characterisation of an adrenal zona glomerulosa-stimulating component of posterior pituitary extracts as MSH,Nature284: 464–467, 1980.PubMedCrossRefGoogle Scholar
  35. 35.
    Matsuoka, H., P.J. Mulrow, and R. Franco-Saenz, Effects of lipotropin and lipotropin-derived peptides on aldosterone production in the rat adrenal gland, JClin Invest68: 752–759, 1981.PubMedCrossRefGoogle Scholar
  36. 36.
    Pedersen, R.C., A.C. Brownie, and N. Ling, Pro-adrenocorticotropin/endorphin-derived peptides: coordinated action on adrenal steroidogenesis,Science208: 1044–1046, 1980.PubMedCrossRefGoogle Scholar
  37. 37.
    Güllner, H.-G., and J.R. Gill, Beta endorphin selectively stimulates aldosterone secretion in hypophysectomized, nephrectomized dogs, JClin Invest71: 124–128, 1983.PubMedCrossRefGoogle Scholar
  38. 38.
    Rabinowe, S.L., T. Taylor, R.G. Dluhy, and G.H. Williams, Endorphin stimulates plasma renin and aldosterone release in normal human subjects, JClin Endocrinol Metab60: 485–492, 1985.PubMedCrossRefGoogle Scholar
  39. 39.
    Lin, S.-Y., E. Wiedmann, and M.H. Humphreys, Role of the pituitary in reflex natriuresis following acute unilateral nephrectomy,Am J Physiol18: F282–290, 1985.Google Scholar
  40. 40.
    Young, III, W.S., Corticotropin-releasing factor mRNA in the hypothalamus is affected differently by drinking saline and by dehydration,FEBS Lett208: 158–162, 1986.PubMedCrossRefGoogle Scholar
  41. 41.
    Elkabes, S., and Y.-P. Loh, Effect of salt loading on proopiomelanocortin (POMC) messenger ribonucleic acid levels, POMC biosynthesis, and secretion of POMC products in the mouse pituitary gland,Endocrinology123: 1754–1760, 1988.PubMedCrossRefGoogle Scholar
  42. 42.
    Humphrey, M.H., and E. Wiedemann, 7-Melanocyte stimulating hormone like peptide (MSH) mediates natriuresis after acute unilateral ureteral pressure elevation (UPE),Clin Res37: 395A, 1989.Google Scholar
  43. 43.
    Howe, A., and A J. Thody, The effect of ingestion of hypertonic saline on the melanocyte-stimulating hormone content and histology of the pars intermedia of the rat pituitary gland,J Endocrinol46:201–208, 1970.PubMedCrossRefGoogle Scholar
  44. 44.
    Rapp, J.P., and L.K. Dahl, Anatomical and protein electrophoretic observations on pituitary cleft colloid in rats genetically susceptible or resistant to salt hypertension,Lab Invest30: 417–426, 1974.Google Scholar
  45. 45.
    Catt, K.J., FA.C. Mendelsohn, MA. Millan, and G. Aguilera, The role of angiotensin II receptors in vascular regulation, JCardiovasc Pharmacol6: S575–S586, 1984.PubMedCrossRefGoogle Scholar
  46. 46.
    Lee, M.R., Dopamine and the kidney (editorial review),Clin Sci62: 439–448, 1982.PubMedGoogle Scholar
  47. 47.
    Kvetanský, R., V.K. Weise, N.B. Thoa, and I.J. Kopin, Effect of chronic guanethidine treatment and adrenal medullectomy on plasma levels of catecholamines and corticosterone in forcibly immobilized rats,J Pharmacol Exp Ther209: 287–291, 1979.Google Scholar
  48. 48.
    Lookingland, K.J., J.M. Farah, Jr., K.L. Lovell, and K.E. Moore, Differential regulation of tuberohypophysial dopaminergic neurons terminating in the intermediate lobe and in the neural lobe of the rat pituitary gland,Neuroendocrinology40: 145–151, 1985.PubMedCrossRefGoogle Scholar
  49. 49.
    McEwen, B.S., E.R. de Kloet, and W. Rostene, Adrenal steroid receptors and actions in the nervous system,Physiol Rev66: 1121–1188, 1986.PubMedGoogle Scholar
  50. 50.
    Anderson, K., K. Fuxe, L.F. Agnati, D. Ganten, I. Zini, P. Eneroth, F. Mascagni, and F. Infantilina, Intraventricular injections of renin increase amine turnover in the tuberoinfundibular dopamine neurones and reduce the secretion of prolactin in the male rat,Acta Physiol Scand116: 317–320, 1982.CrossRefGoogle Scholar
  51. 51.
    Steele, M.K., S.M. McCann, and A. Negro-Vilar, Modulation by dopamine and estradiol of the central effects of angiotensin II on anterior pituitary hormone release,Endocrinology111: 722–729, 1982.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Greti Aguilera
    • 1
  1. 1.Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human DevelopmentNational Institute of HealthBethesdaUSA

Personalised recommendations