Skip to main content
Book cover

Kindling 4 pp 93–112Cite as

Forebrain and Brainstem Mechanisms Governing Kindled Seizure Development: A Hypothesis

  • Chapter

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 37))

Abstract

What is the nature of the kindling process? “Kindling” was coined by Goddard and his colleagues [20] to describe an observed phenomenon — the progressively increasing seizure generalization seen with repeated, temporally spaced stimulations of certain brain structures. From this phenomenological point of view, kindling is well named, since it appears to be a self-perpetuating process which once started continues inexorably to completion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applegate, C.D. and J.L. Burchfiel. Microinjections of GABA agonists into the amygdala complex attenuates kindled seizure expression in the rat. Exp. Neurol. 102: 185–189, 1988.

    Article  PubMed  CAS  Google Scholar 

  2. Applegate, C.D., J.L. Burchfiel and R.J. Konkol. Kindling antagonism: Effects of norepinephrine depletion on kindled seizure suppression after concurrent, alternate stimulation in rats. Exp. Neurol. 94: 379–390, 1986.

    CAS  Google Scholar 

  3. Applegate, C.D., R.J. Konkol and J.L. Burchfiel. Kindling antagonism: A role for hindbrain norepinephrine in the development of site suppression following concurrent, alternate stimulation. Brain Res. 407: 212–222, 1987

    Article  PubMed  CAS  Google Scholar 

  4. Browning, R.A. Effects of lesions on seizures in experimental animals. In: “Epilepsy and the Reticular Formation: The Role of the Reticular Core in Convulsive Seizures”, edited by G.H. Fromm, C.L. Faingold, R.A. Browning and W.M. Burnham. New York: Alan R. Liss, 1987, pp. 137–162.

    Google Scholar 

  5. Burchfiel, J.L., C.D. Applegate and R.J. Konkol. Kindling antagonism: A role for norepinephrine in seizure suppression. In: “Kindling 3”, edited by J.A. Wada. New York: Raven Press, 1986, pp. 213–229.

    Google Scholar 

  6. Burchfiel, J.L. and C.D. Applegate. Characteristics of the state of seizure suppression in the kindling antagonism model. Soc. Neurosci. 12: 70, 1986.

    Google Scholar 

  7. Burchfiel, J.L. and C.D. Applegate. Kindling antagonism: The effects of combined neonatal and adult 6-hydroxydopamine treatment. Epilepsia 29: 675, 1988.

    Google Scholar 

  8. Burchfiel, J.L. and C.D. Applegate. Stepwise progression of kindling: Perspectives from the kindling antagonism model. Neurosci. Bioehay. Rev. in Apress.

    Google Scholar 

  9. Burchfiel, J.L., K.A. Serpa and F.H. Duffy. Further studies of antagonism of seizure development between concurrently developing kindled limbic foci in the rat. Exp. Neurol. 75: 476–489, 1982.

    Article  PubMed  CAS  Google Scholar 

  10. Burchfiel, J.L., K.A. Serpa and F.H. Duffy. Kindling antagonism: Interactions of dorsal and ventral entorhinal cortex with septum during concurrent kindling. Brain Res. 236: 3–12, 1982.

    Article  Google Scholar 

  11. Burnham, W.M. Primary and ‘transfer’ seizure development in the kindled rat. In: “Kindling”, edited by J.A. Wada. New York: Raven Press, 1976, pp. 61–84.

    Google Scholar 

  12. Burnham, W.M. Electrical stimulation studies: Generalized convulsions triggered from the brain-stem. In: “Epilepsy and the Reticular Formation: The Role of the Reticular Core in Convulsive Seizures”, edited by G.H. Fromm, C.L. Faingold, R.A. Browning and W.M. Burnham. New York: Alan R. Liss, 1987, pp. 25–38.

    Google Scholar 

  13. Burnham, W.M. and R.A. Browning. The reticular core and generalized convulsions: A unified hypothesis. In: “Epilepsy and the Reticular Formation: The Role of the Reticular Core in Convulsive Seizures”, edited by G.H. Fromm, C.L. Faingold, R.A. Browning and W.M. Burnham. New York: Alan R. Liss, 1987, pp. 193–201.

    Google Scholar 

  14. Corcoran, M.E. Catecholamines and kindling. In: “Kindling 2”, edited by J.A. Wada. New York: Raven Press, 1981, pp. 87–104.

    Google Scholar 

  15. Corcoran, M.E. and S.T. Mason. Role of forebrain catecholamines in amygdaloid kindling. Brain Res. 190: 473–484, 1980.

    Article  PubMed  CAS  Google Scholar 

  16. Duchowny, M.S. and J.L. Burchfiel. Facilitation and antagonism of kindled seizure development in the limbic system of the rat. Electroenceph. Clin. Neurophysiol. 51: 403–416, 1981.

    Article  CAS  Google Scholar 

  17. Ehlers, C.L., D.K. Clifton and C.H. Sawyer. Facilitation of amygdala kindling in the rat by transecting ascending noradrenergic pathways. Brain Res. 189: 274–278, 1980.

    Article  PubMed  CAS  Google Scholar 

  18. Gale, K. Mechanisms of seizure control mediated by gamma-aminobutyric acid: Role of the substantia nigra. Fed. Proc. 44: 2414–2424, 1985.

    Google Scholar 

  19. Garant, D.S. and K. Gale. Substantia nigra-mediated anticonvulsant actions: Role of nigral output pathways. Exp. Neurol. 97: 143–159, 1987.

    CAS  Google Scholar 

  20. Goddard, G.V., D.C. McIntyre and C.K. Leech. A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol. 25: 294–330, 1969.

    Article  Google Scholar 

  21. Jimenez-Rivera, C., A. Voltura and G.K. Weiss. Effect of locus ceruleus stimulation on the development of kindled seizures. Exp. Neurol. 95: 1320, 1987.

    Article  Google Scholar 

  22. Kairiss, E.W., R.J. Racine and G.K. Smith. the development of the interictal spike during kindling in the rat. Brain. Res. 322: 101–110, 1984.

    Article  PubMed  CAS  Google Scholar 

  23. Konkol, R.J., E.G. Bendeich and G.R. Breese. A biochemical and morphological study of the altered growth pattern of central catecholamine neurons following 6-hydroxydopamine. Brain Res. 140: 125–135, 1978.

    Article  PubMed  CAS  Google Scholar 

  24. Le Gal La Salle, G. Amygdaloid kindling in the rat: Regional differences and general properties. In: “Kindling 2”, edited by J.A. Wada. New York: Raven Press, 1981, pp. 31–47.

    Google Scholar 

  25. Mason, S.T. and M.E. Corcoran. Seizure susceptibility after depletion of spinal or cerebellar noradrenaline with 6-hydroxydopamine. Brain Res. 166: 418–421, 1979.

    Article  PubMed  CAS  Google Scholar 

  26. McIntyre, D.C. Amygdala kindling in rats. Facilitation after local amygdala norepinephrine depletion with 6-hydroxydopamine. Exp. Neurol. 69: 395–407, 1979.

    Google Scholar 

  27. McIntyre, D.C. Kindling and the pyriform cortex. In: “Kindling 3”, edited by J.A. Wada. New York: Raven Press, 1986, pp. 249–262.

    Google Scholar 

  28. McIntyre, D.C. and N. Edson. Facilitation of amygdala kindling after norepinephrine depletion with 6-hydroxydopamine in rats. Exp. Neurol 74: 748–757, 1981.

    Article  PubMed  CAS  Google Scholar 

  29. McIntyre, D.C., M. Saari and B.A. Pappas. Potentiation of amygdale kindling in adult or infant rats by injection of 6-hydroxydopamine. Exp. Neurol. 63: 527–544, 1979.

    Google Scholar 

  30. McNamara, J.O. M. Byrne, R. Dashieff and J. Fitz. The kindling model of epilepsy: A review. Prog. Neurobiol. 15: 139–159, 1980.

    Article  CAS  Google Scholar 

  31. McNamara, J.O., M.T. Galloway, L.C. Rigsbee and C. Shin. Evidence implicating substantia nigra in regulation of kindled seizure threshold. J. Neurosci. 4: 2410–2417, 1984.

    PubMed  CAS  Google Scholar 

  32. Racine, R.J. Modification of seizure activity by electrical stimulation:I. After-discharge threshold. Electroenceph. Clin. Neurophysiol. 32: 269–279, 1972.

    Article  PubMed  CAS  Google Scholar 

  33. Racine, R.J. Modification of seizure activity by electrical stimulation: H. Motor Seizure. Electroenceph. Clin. Neurophysiol. 32: 281–294, 1972.

    CAS  Google Scholar 

  34. Racine, R.J. Kindling: The first decade. Neurosurgery 3: 234–252, 1978.

    Article  PubMed  CAS  Google Scholar 

  35. Racine, R.J. and W.M. Burnham. The kindling model. In: “The Electrophysiology of Epilepsy”, edited by P. Schwartzkroin and H. Wheal. London: Academic Press, 1984, pp. 153–171.

    Google Scholar 

  36. Racine, R.J., W.M. Burnham, M. Gilburt and E.W. Kairiss. Kindling mechanisms: I. Electrophysiological studies. In: “Kindling 3”, edited byJ. A. Wada. New York: Raven Press, 1986, pp. 263–282.

    Google Scholar 

  37. Racine, R.J. and D.C. McIntyre. Mechanisms of kindling: A current view. In: “The Limbic System: Functional Organization and Clinical Disorders”, edited by B.K. Doane and K.E. Livingstone. New York: Raven Press, 1986, pp. 109–121.

    Google Scholar 

  38. Racine, R.J., M. Mosher and E.W. Kairiss. The role of the pyriform cortex in the generation of the interictal spikes in the kindled preparation. Brain Res. 454: 251–263, 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Sachs, C.H., C. Pycock and G. Jonsson. Altered development of central noradrenaline neurons during ontogeny by 6-hydroxydopamine. Med. Biol. 52: 55–65, 1974.

    PubMed  CAS  Google Scholar 

  40. Sato, M. and T. Nakashima. Kindling: Secondary epileptogenesis, sleep and catecholamines. Can. J. Neurol. Sci. 2: 439–446, 1975.

    PubMed  CAS  Google Scholar 

  41. Wada, J.A. and M. Sato. Generalized convulsive seizure induced by daily electrical stimulation of the amygdala in cats: Correlative electrographic and behavioral features. Neurology 24: 565–574, 1974.

    PubMed  CAS  Google Scholar 

  42. Wada, J.A. and M. Sato. The generalized convulsive seizure state induced by daily electrical stimulation of the amygdala in split brain cats. Epilepsia 16: 417–430, 1975.

    Article  PubMed  CAS  Google Scholar 

  43. Wada, J.A. and M. Sato. Effects of unilateral lesion in the midbrain reticular formation on kindled amygdaloid convulsion in cats. Epilepsia 16: 693–697, 1975.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Burchfiel, J.L., Applegate, C.D. (1990). Forebrain and Brainstem Mechanisms Governing Kindled Seizure Development: A Hypothesis. In: Wada, J.A. (eds) Kindling 4. Advances in Behavioral Biology, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5796-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5796-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5798-8

  • Online ISBN: 978-1-4684-5796-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics