Skip to main content
Book cover

Kindling 4 pp 209–225Cite as

Does Electrical and Excitatory Amino Acid Kindling Share a Common Neurobiological Mechanism?

  • Chapter
  • 70 Accesses

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 37))

Abstract

There is convincing evidence that excitatory amino acids, particularly glutamate (GLU) and aspartate (ASP), are involved in basic mechanism of epilepsy (for reviews see refs. 1,2,26). Thus, enhanced release, and reduced tissue levels, of excitatory amino acids have been reported in various animal models of epilepsy (9,13,20,24,34,41,44). Reduced levels of both GLU and ASP have also been demonstrated in tissue excised from human epileptic foci (42,43). In addition, excitatory amino acid antagonists have been shown to block epileptic seizures and epileptiform activity in both rodent and primate models of epilepsy (4,5,6,26,34,39,40).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradford, H.F. and Dodd, P.R. (1976) Biochemistry and basic mechanisms in epilepsy. In: Biochemistry and neurological disease, A.N. Davison (ed), Blackwell, Oxford, pp 114–168.

    Google Scholar 

  2. Bradford, H.F. and Peterson, D.W. (1987) Current views of the pathobiochemistry of epilepsy. Mol. Aspects Med., 9: 119–172.

    Article  PubMed  CAS  Google Scholar 

  3. Burnham, W.M. (1975) Primary and ‘transfer’ seizure development in the kindled rat. Can. J. Neurol. Sci., 2: 417–428.

    PubMed  CAS  Google Scholar 

  4. Coutinho-Netto, J., Abdul-Ghani, A.S., Collins, J.F. and Bradford, H.F. (1981) Is glutamate a trigger factor in epileptic hyperactivity. Epilepsia, 22: 289–296.

    Article  PubMed  CAS  Google Scholar 

  5. Croucher, N.J., Collins, J.F. and Meldrum, B.S. (1982) Anticonvulsant action of excitatory amino acid antagonists. Science, 216: 889–901.

    Article  Google Scholar 

  6. Croucher, M.J. and Meldrum, B.S. (1984) The role of dicarboxylic amino acis in epilepsy and the use of antagonists as antiepileptic agents. In: Neurotransmitters, Seizures and Epilepsy II, Fariello et al (ed),-Raven, York, pp 227–236.

    Google Scholar 

  7. Curtis, S.T. and Johnstone, G.A.R. (1974) Amino acid transmitters in mammalian central nervous system. Ebn. Physiol., 69: 97–188.

    CAS  Google Scholar 

  8. Divac, I. (1975) Magnocellular nuclei of the basal forebrain project to neocortex, brain stem and olfactory bulb. Review of some functional correlates. Brain Research, 93: 385–398.

    Article  PubMed  CAS  Google Scholar 

  9. Dodd, P.R. and Bradford, H.F. (1976) Release of amino acids from the maturing cobalt epilepticfocus. Brain Research, 111: 377–388.

    Article  PubMed  CAS  Google Scholar 

  10. Emson, P.C., Paxinos, G., Le Gal la Salle, G., Ben-Ari, Y. and Silver, A. (1979) Choline acetyltransferase and acetylcholinesterase-containing projections from the basal forebrain to the amygdaloid complex of the rat. Brain Research, 165: 271–282.

    Article  PubMed  CAS  Google Scholar 

  11. Femano, P.A., Edinger, H.M. and Siegel, A. (1983) The effects of stimulation of substantia innominata and sensory receiving areas of the forebrain upon the activity of neurons within the amygdala of anesthetized cat. Brain Research, 269: 119–132.

    Article  PubMed  CAS  Google Scholar 

  12. Freeman, A.R. (1976) Polyfunctional role of glutamic acid in excitatory synapstic transmission. Prog. Neurobiol., 6: 137–153.

    Article  Google Scholar 

  13. Geula, C., Jarvie, P.A., Logan, T.C. and Slevin, J.T. (1988) Long-term enhancement of K+-evoked release of L-glutamate in entorhinal kindled rats. Brain Research, 442: 368–372.

    Article  PubMed  CAS  Google Scholar 

  14. Goddard, G.V., McIntyre, D.C. and Leach, C.K. (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol., 25: 295–330.

    Article  PubMed  CAS  Google Scholar 

  15. Goodchild, A.K., Dampney, R.A.L. and Bandler, R. (1982) A method for evoking physiological responses by stimulation of the cell body, but not the axons of passage, within localized regions of the central nervous system. J. Neurosci. Meth., 6: 351–363.

    Article  CAS  Google Scholar 

  16. Gorry, J.D. (1963) Studies on the comparative anatomy of the ganglion basale of Mynert. Acta Anat., 55: 51–104.

    Article  PubMed  CAS  Google Scholar 

  17. Greenamyre, J.T., Young, A.B. and Penny J.B. (1984) Quantitative autoradiographic distribution of L-[3H]glutamate-binding sites in rat central nervous system. J. Neurosci., 4: 2133–2144.

    PubMed  CAS  Google Scholar 

  18. Herrling, P.L. (1984) Evidence that the cortically evoked e.p.s.p. in cat caudate neurones is mediated by non-NMDA excitatory amino acid receptors. J. Physiol. (Lond.), 353: 98 P.

    Google Scholar 

  19. Kimura, H., Kaneko, Y. and Wada, J.A. (1981) Catecholamine and cholinergic systems and amygdaloid kindling. In: Kindling 2, J.A. Wada (ed), Raven, New York, pp 268–287.

    Google Scholar 

  20. Koyama, I. (1972) Amino acids in the cobalt-induced epileptogenic and nonepileptogenic cat’s cortex. Can. J. Physiol. Pharmacol., 50: 740–752.

    Article  PubMed  CAS  Google Scholar 

  21. Krnjevic, K., Pumain, R. and Renaud, L. (1978) The mechanisms of excitation in the cerebral cortex. J. Physiol. (Lond.), 215: 247–268.

    Google Scholar 

  22. Krnjevic, K. and Silver, A. (1965) A histochemical study of cholinergic fibers in the cerebral cortex. J. Anat., 99: 711–759.

    PubMed  CAS  Google Scholar 

  23. Lamour, Y., Dutar, P. and Jobert, A. (1982) Excitatory effect of acetylcholine on different types of neurons in the first somatosensory neocortex of the rat: Laminar distribution and pharmacological characteristics. Neuroscience, 7: 1483–1494.

    Article  PubMed  CAS  Google Scholar 

  24. Leach, M.J., Marden, C.M., Miller, A.A., O’Donnel, R.A. and Weston, S.B. (1985) Changes in cortical amino acids during electrical kindling in rats. Neuropharmacology, 24: 937–940.

    Article  PubMed  CAS  Google Scholar 

  25. McIntyre, D.C. and Goddard, G.V. (1973) Transfer, interference and spontaneous recovery of convulsions kindled from the rat amygdala. Electroencephalogr. Cli. Neuroohysiol., 35: 535–543.

    Google Scholar 

  26. Meldrum, B.S. (1984) Amino aci transmitters and new approaches to anticonvulsant drug action. Epilepsia, 25: 379–393.

    Article  Google Scholar 

  27. Mesulam, M.H. and Van Hoesen, G.W. (1980) Acetylcholinesterase-rich projections from the basal forebrain of the rhesus monkey to neocortex. Brain Research, 109: 152–157.

    Article  Google Scholar 

  28. Morimoto, N., Holmes, K.H. and Goddard, G.V. (1987) Kindling-induced changes in EEG recorded during stimulation at the site of stimulation. DI. Direct pharmacological manipulation of kindled amygdala. Exp. Neurol., 97: 17–34.

    Article  PubMed  CAS  Google Scholar 

  29. Morita, K., Okamoto, M., Seki, K. and Wada, J.A. (1985) Suppression of amygdala-kindled seizure in cats by enhanced GABAergic transmission in sustantia innominata. Exp. Neurol., 89: 225–236.

    Article  PubMed  CAS  Google Scholar 

  30. Nagai, R. and Kimura, H. (1982) Cholinergie projections from the basal forebrain of the rat amygdala. J. Neurosci., 2: 512–520.

    Google Scholar 

  31. Okamoto, M. and Wada, J.A. (1984) Reversible suppression of amygdaloidkindled convulsion following unilateral gabaculline injection into the substantia innominata. Brain Research, 305: 389–392.

    Article  PubMed  CAS  Google Scholar 

  32. Olney, J.W. and Price, M.T. (1983) Excitotoxic amino acids as neuroendocrine research tools. Meth. Enzymol., 103: 379–393.

    Article  PubMed  CAS  Google Scholar 

  33. Perkins, M.N. and Stone, T.W. (1982) An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogeneous excitant quinolinic acid. Brain Research, 247: 184–187.

    Article  PubMed  CAS  Google Scholar 

  34. Peterson, D.W., Collins, J.F. and Bradford, H.F. (1983) The kindled amygdala model of epilepsy: Anticonvulsant action of amino acid antagonists. Brain Research, 275: 169–172.

    Article  PubMed  CAS  Google Scholar 

  35. Racine, R. (1972) Modification of seizure activity by electrical stimulation. H: Motor seizure. Electroencephalogr. Cli. Neuroplhysiol., 32: 281–294.

    Article  CAS  Google Scholar 

  36. Sakai, S. and Wada, J.A. (1987) Reversible suppression of amygdaloid and cortically kindled seizure in Senegalese baboon, Pao papio, by unilateral injection of gabaculline into the substantia innominata. Epilepsia, 28: 618.

    Google Scholar 

  37. Sato, T., Mori, N. and Kumashiro, H. (1985) A new model of epileptic seizure utilizing the additive excitatory activity by combining two excitatory amino acids. Folia Psychiatr. Neurol. Jpn., 39: 431–432.

    CAS  Google Scholar 

  38. Tanaka, A. (1972) Progressive changes of behavioural and electroencephalographic responses to daily amygdaloid stimulation in rabbits. Fukuoka Acta Med., 63: 152–164.

    Google Scholar 

  39. Thompson, J.L., Holmes, G.L., Taylor, G.W. and Feldman, D.R. (1988) Effects of kynurenic acid on amygdaloid kindling in rats. Epilepsy Res., 2: 302–308.

    Article  PubMed  CAS  Google Scholar 

  40. Turski, L., Meldrum, B.S. and Collins, J.F. (1985) Anticonvulsant action of ß -kainic acid in mice. Is ß -kainic acid an N-methyl-D-aspartate antagonist? Brain Research, 336: 162–166.

    Article  PubMed  CAS  Google Scholar 

  41. Van Gelder, N.M. and Courtois, A. (1972) Close correlation between changing content of specific amino acids in epileptogenic cortex of cats and severity of epilepsy. Brain Research, 40: 447–484.

    Google Scholar 

  42. Van Gelder, N.M., Sherwin, A.L. and Rasmussen, T. (1972) Amino acid content of epileptogenic human brain: Focal versus surrounding regions. Brain Research, 40: 385–392.

    Article  PubMed  Google Scholar 

  43. Van Gelder, N.M., Sherwin, A.L., Sacks, C. and Aldermann, F. (1975) Biochemical observations following administration of taurine to patients with epilepsy. Brain Research, 94: 297–306.

    Article  PubMed  Google Scholar 

  44. Van Gelder, N.M., Siatitsas, I., Menini, C. and Gloor, P. (1983) Feline generalized penicillin epilepsy: Changes of glutamic acid and taurine parallel the progressive increase in excitability of the cortex. Epilepsia, 24: 200–213.

    Article  PubMed  Google Scholar 

  45. Wada, J.A. (1980) Amygdaloid and frontal cortical kindling in subhuman primates. In: Limbic Epilepsy and the Dyscontrol Syndrome, M. Girgis and L.G. Kiloh (ed), Elsevier, Amsterdam, pp 133–146.

    Google Scholar 

  46. Wada, J.A., Mizoguchi, T. and Komai, S. (1981) Cortical motor activation in amygdaloid kindling: Observation in non-epileptic rhesus monkeys with anterior 2/3 callosal bisection. In: Kindling 2, J.A. Wada (ed), Raven, New York, pp 235–248.

    Google Scholar 

  47. Waker, J.E. and Fonnum, F. (1983) Regional cortical glutaminergic projects to the amygdala and thalamus of rats. Brain Research, 267: 371–374.

    Article  Google Scholar 

  48. Watkins, J.C. and Evans, R.H. (1981) Excitatory amino acid transmissions. Ann. Rev. Pharmacol., 21: 165–204.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Mori, N., Wada, J.A. (1990). Does Electrical and Excitatory Amino Acid Kindling Share a Common Neurobiological Mechanism?. In: Wada, J.A. (eds) Kindling 4. Advances in Behavioral Biology, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5796-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5796-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5798-8

  • Online ISBN: 978-1-4684-5796-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics