Influence of an External Periodic Flow on Dendritic Crystal Growth

  • Ph. Bouissou
  • B. Perrin
  • P. Tabeling
Part of the NATO ASI Series book series (NSSB, volume 225)


The problem of dendritic shape selection in crystal growth processes has been the subject of many theoretical and experimental studies these last years(1–8). Experimentally, dendritic side-branching has received less attention despite the significant number of theoretical and numerical studies devoted to this problem(9–12). A recent experimental study(13) shows results consistent with the assumption that side-branching originates into the selective amplification of microscopic noise at the crystal tip. Indeed, for testing such an assumption, it would be necessary to control the noise in the experimental system. Such a control has been achieved in the case of anomalous Saffman-Taylor fingers(14). In the present crystal growth experiment, we achieve a control of the side-branching by imposing a time dependent flow during the growth process. We report herein a first quantitative study of the effect of a periodic external flow on dendritic growth.


Crystal Growth Process Hydraulic Circuit Pivalic Acid Time Dependent Flow Rough Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    J. S. Langer (1986), Phys. Rev. A 33, 435MathSciNetADSCrossRefGoogle Scholar
  2. (2).
    S.C. Huang, M.E. Glicksman (1981), Acta Metall. 29, 717CrossRefGoogle Scholar
  3. (3).
    P. Pelcé, Y. Pomeau (1986), Stud. Appl. Math. 74, 245MathSciNetzbMATHGoogle Scholar
  4. (4).
    D. A. Kessler, H. Levine (1986), Phys. Rev. Lett. 57, 24CrossRefGoogle Scholar
  5. (5).
    M. E. Glicksman, N. B. Singh (1986) in “Rapidly Solidified Powder Aluminium Alloys”Google Scholar
  6. (6).
    A. Dougherty, J. P. Gollub (1988), Phys. Rev. A 38, 3043ADSCrossRefGoogle Scholar
  7. (7).
    M. Ben Amar, Y. Pomeau (1986), Europhys. Lett., 2, 307ADSCrossRefGoogle Scholar
  8. (8).
    For a recent review, see P. Pelcé, Dynamics of curved fronts, Perspectives in Physics (Academic New York, 1988)zbMATHGoogle Scholar
  9. (9).
    P. Pelcé, P. Clavin (1987), Europhys. Lett. 3, 907ADSCrossRefGoogle Scholar
  10. (10).
    D. A. Kessler, H. Levine (1987), Europhys. Lett. 4, 215ADSCrossRefGoogle Scholar
  11. (11).
    M. N. Barber, A. Barbieri, J. S. Langer (1987), Phys. Rev. A 36, 3340ADSCrossRefGoogle Scholar
  12. (12).
    B. Caroli, C. Caroli, B. Roulet (1987), J. Phys. 48, 1423CrossRefGoogle Scholar
  13. (13).
    A. Dougherty, P. D. Kaplan, J. P. Gollub (1987), Phys. Rev. Lett. 58, 1652ADSCrossRefGoogle Scholar
  14. (14).
    M. Rabaud, Y. Couder, N. Gerard (1988), Phys. Rev. A 37, 935ADSCrossRefGoogle Scholar
  15. (15).
    Ph. Bouissou, B. Perrin, P. Tabeling (1989), Phys. Rev. A 40, 509ADSCrossRefGoogle Scholar
  16. (16).
    S. C. Hung, M. E. Glicksman (1981), Acta Metall. 29, 701CrossRefGoogle Scholar
  17. (17).
    Ph. Bouissou (1989), Université P. et M. Curie Thesis “Etude de l’influence d’un écoulement sur la croissance dendritique: aspect théorique et expériemental”Google Scholar
  18. (18).
    Ya. B. Zel’dovich, D. A. Frank-Kamenetskii (1938), Acta Physicochimica USRR 2, 341Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Ph. Bouissou
    • 1
  • B. Perrin
    • 1
  • P. Tabeling
    • 1
  1. 1.Ecole Normale SupérieureParisFrance

Personalised recommendations