Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 225))

Abstract

In idealized two-dimensional convection the system possesses D 2 symmetry and the fundamental solution (a single roll) has point symmetry about its axis. This symmetry can be broken in a pitchfork bifurcation giving rise to mixed-mode solutions connecting branches of pure single-roll and two-roll solutions. Numerical experiments provide examples of symmetry-breaking in the nonlinear regime, where the bifurcation structure can be related to physical properties of the flow. In ther-mosolutal convection oscillations lose first spatial and then temporal symmetry. In compressible magnetoconvection there are transitions from steady single-roll solutions to mixed-mode quasiperiodic and periodic solutions, and also from single-roll standing wave to two-roll travelling wave solutions. Three-dimensional convection allows a richer variety of transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barten, W., Lücke, M., Hort, W. and Kamps, M., 1989, Fully developed travelling-wave convection in binary fluid mixtures, Phys. Rev. Lett., 63:376.

    Article  ADS  Google Scholar 

  • Bretherton, C. S. and Spiegel, E. A., 1983, Intermittency through modulational instability, Phys. Lett., 96A:152.

    ADS  Google Scholar 

  • Coullet, P. H. and Spiegel, E. A., 1983, Amplitude equations for systems with competing instabilities, SIAM J. Appl. Math. 43:776.

    Article  MathSciNet  MATH  Google Scholar 

  • Dangelmayr, G., Armbruster, D. and Neveling, M., 1985, A codimension three bifurcation for the laser with saturable absorber, Z. Phys. B, 59:365.

    Article  MathSciNet  ADS  Google Scholar 

  • Guckenheimer, J. and Holmes, P., 1986, “Nonlinear oscillations, dynamical systems and bifurcations of vector fields,” 2nd ed., Springer, New York.

    Google Scholar 

  • Huppert, H. E. and Moore, D. R. 1976, Nonlinear double-diffusive convection, J. Fluid Mech., 166:409.

    Google Scholar 

  • Hurlburt, N. E., Proctor, M. R. E., Weiss, N. O. and Brownjohn, D. P., 1989, Nonlinear compressible magnetoconvection Part 1. Travelling waves and oscillations, J. Fluid Mech., 207:587.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hurlburt, N. E. and Toomre, J., 1988, Magnetic fields interacting with nonlinear compressible convection, Astrophys. J., 327:920.

    Article  ADS  Google Scholar 

  • Knobloch, E., Deane, A. E., Toomre, J. and Moore, D. R., 1986a, Doubly diffusive waves, Contemp. Maths, 56:203.

    Article  MathSciNet  Google Scholar 

  • Knobloch, E. and Guckenheimer, J., 1983, Convective transitions induced by a varying aspect ratio, Phys. Rev. A, 27:408.

    Article  MathSciNet  ADS  Google Scholar 

  • Knobloch, E., Moore, D. R., Toomre, J. and Weiss, N. O., 1986b, Transitions to chaos in two-dimensional double-diffusive convection, J. Fluid Mech., 166:409.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Knobloch, E. and Proctor, M. R. E., 1981, Nonlinear periodic convection in double-diffusive systems, J. Fluid Mech., 108:291.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lennie, T. B., McKenzie, D. P., Moore, D. R. and Weiss, N. O., 1988, The breakdown of steady convection, J. Fluid Mech., 188:47.

    Article  MathSciNet  ADS  Google Scholar 

  • McKenzie, D. P., 1988, The symmetry of convective transitions in space and time, J. Fluid Mech., 191:287.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • McKenzie, D. P., Moore, D. R., Weiss, N. O. and Wilkins, J. M., 1990, in preparation.

    Google Scholar 

  • Moore, D. R., Weiss, N. O. and Wilkins, J. M., 1989a, Symmetry-breaking in ther-mosolutal convection, Phys. Lett. A, submitted.

    Google Scholar 

  • Moore, D. R., Weiss, N. O. and Wilkins, J. M., 1989b, The reliability of numerical experiments: transitions to chaos in thermosolutal convection, Nonlinearity, submitted.

    Google Scholar 

  • Moore, D. R., Weiss, N. O. and Wilkins, J. M., 1989c, Asymmetric oscillations in thermosolutal convection, J. Fluid Mech., to be submitted.

    Google Scholar 

  • Nagata, M., Proctor, M. R. E. and Weiss, N. O. 1989, Transitions to asymmetry in magnetoconvection, Geophys. Astrophys. Fluid Dyn., in press.

    Google Scholar 

  • Segel, L. A., 1962, The non-linear interaction of two disturbances in the thermal convection problem, J. Fluid Mech., 14:97.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Stewart, I. N., 1988, Bifurcations with symmetry, in “New directions in dynamical systems,” T. Bedford and J. W. Swift, eds, p. 233, Cambridge University Press, Cambridge.

    Google Scholar 

  • Stuart, J. T., 1962, Non-linear effects in hydrodynamic stability, in “Applied Mechanics,” F. Rolla and W. T. Koiter, eds, p. 63, Elsevier, Amsterdam.

    Google Scholar 

  • Veronis, G., 1966, Large-amplitude Bénard convection, J. Fluid Mech., 26:49.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Veronis, G., 1968, Effect of a stabilising gradient of solute on thermal convection, J. Fluid Mech., 34:315.

    Article  ADS  MATH  Google Scholar 

  • Weiss, N. O., 1987, Dynamics of convection, Proc. Roy. Soc. Lond. A, 413:71.

    Article  ADS  MATH  Google Scholar 

  • Weiss, N. O., Brownjohn, D. P., Hurlburt, N. E. and Proctor, M. R. E., 1990, Mon. Not. Roy. Astr. Soc, submitted.

    Google Scholar 

  • White, D. B., 1988, The planforms and onset of convection with a temperature-dependent viscosity, J. Fluid Mech., 191:247.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Weiss, N.O. (1990). Symmetry Breaking in Nonlinear Convection. In: Busse, F.H., Kramer, L. (eds) Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems. NATO ASI Series, vol 225. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5793-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5793-3_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5795-7

  • Online ISBN: 978-1-4684-5793-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics