Skip to main content

Mutual Interplay between the Break-Up of Spatial Order and the Onset of Low-Dimensional Temporal Chaos in an Exemplary Semiconductor System

  • Chapter
Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems

Part of the book series: NATO ASI Series ((NSSB,volume 225))

  • 238 Accesses

Abstract

Partially all branches of modern science ranging from physics through chemistry and biology to economics and sociology deal with complex nonlinear systems the dynamics of which may acquire a macroscopic spatial, temporal, or functional structure without specific interference from the outside. Such ubiquitous processes of spontaneous self-organization can in general be formulated as nonequilibrium order-disorder phase transitions. The basic idea for the underlying unifying approach stems from that of synergetics1 and information thermodynamics.2 It implies that we consider open systems capable of decomposing into a potentially large number of competing individual subparts. In our quest to understand how structures are generated by nature, the mutual interaction among these subsystems, or say variables, is of fundamental importance in the neighborhood of critical instability points where only a few collective degrees of freedom, often called order parameters, dominate the global system behavior. Those coherent variables force the subsystems to join an organized motion, just giving the total system its specific structure or order. Most characteristically, it turns out that the detailed nature of any particular subsystem becomes unessential, ensuing the universal character of pattern-forming processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Haken, “Advanced Synergetics”, Springer, Berlin (1989).

    Google Scholar 

  2. H. Haken, “Information and Self-Organization”, Springer, Berlin (1988).

    MATH  Google Scholar 

  3. Y. Abe, ed., “Nonlinear and Chaotic Transport Phenomena in Semiconductors”, special issue of Appl. Phys. A, vol. 48, pp. 93 – 191, Springer, Berlin (1989), and references therein.

    Google Scholar 

  4. R.P. Huebener, K.M. Mayer, J. Parisi, J. Peinke, and B. Röhricht, Chaos in semiconductors, Nucl. Phys. B (Proc. Suppl.) 2: 3 (1987).

    Article  ADS  Google Scholar 

  5. K.M. Mayer, J. Peinke, B. Röhricht, J. Parisi, and R.P. Huebener, Spatial and temporal current instabilities in germanium, Physica Scripta T 19: 505 (1987).

    Article  ADS  Google Scholar 

  6. J. Peinke, J. Parisi, B. Röhricht, K.M. Mayer, U. Rau, and R.P. Huebener, Spatio-temporal instabilities in the electric breakdown of p-germanium, Solid State Electron. 31: 817 (1988).

    Article  ADS  Google Scholar 

  7. K.M. Mayer, J. Parisi, and R.P. Huebener, Imaging of self-generated multifilament ary current patterns in GaAs, Z. Phys. B — Condensed Matter 71: 171 (1988).

    Article  ADS  Google Scholar 

  8. K.M. Mayer, J. Parisi, J. Peinke, and R.P. Huebener, Resonance imaging of dynamical filamentary current structures in a semiconductor, Physica D 32: 306 (1988).

    Article  ADS  Google Scholar 

  9. E. Schöll, “Nonequilibrium Phase Transitions in Semiconductors”, Springer, Berlin (1987).

    Book  Google Scholar 

  10. R.P. Huebener, J. Peinke, and J. Parisi, Experimental progress in the nonlinear behavior of semiconductors, Appl. Phys. A 48: 107 (1989).

    Article  ADS  Google Scholar 

  11. B. Röhricht, J. Parisi, J. Peinke, and O.E. Röss1er, A simple morphogenetic reaction-diffusion model describing nonlinear transport phenomena in semiconductors, Z. Phys. B — Condensed Matter 65: 259 (1986).

    Article  ADS  Google Scholar 

  12. J. Parisi, J. Peinke, B. Röhricht, U. Rau, M. Klein, and O.E. Rössler, Comparison between a generic reaction-diffusion model and a synergetic semiconductor system, Z. Naturforsch. 42 a: 655 (1987).

    Google Scholar 

  13. J. Peinke, J. Parisi, B. Röhricht, K.M. Mayer, U. Rau, W. Clauß, R.P. Huebener, G. Jungwirt, and W. Prettl, Classification of current instabilities during low-temperature breakdown in germanium, Appl. Phys. A 48: 155 (1989).

    ADS  Google Scholar 

  14. R.P. Huebener, Scanning electron microscopy at very low temperatures, in: “Advances in Electronics and Electron Physics”, vol. 70, p. 1, P.W. Hawkes, ed., Academic Press, New York (1988).

    Chapter  Google Scholar 

  15. J. Parisi, U. Rau, J. Peinke, and K.M. Mayer, Determination of electric transport properties in the pre- and post-breakdown regime of p-ger-manium, Z. Phys. B — Condensed Matter 72: 225 (1988).

    Article  ADS  Google Scholar 

  16. J. Peinke, D.B. Schmid, B. Röhricht, and J. Parisi, Positive and negative differential resistance in electrical conductors, Z. Phys. B — Con-densed Matter 66: 65 (1987).

    Article  ADS  Google Scholar 

  17. K.M. Mayer, R. Gross, J. Parisi, J. Peinke, and R.P. Huebener, Spatially resolved observation of current filament dynamics in semiconductors, Solid State Commun. 63: 55 (1987).

    Article  ADS  Google Scholar 

  18. U. Rau, J. Peinke, J. Parisi, and R.P. Huebener, Switching behavior of current filaments in p-germanium connected in parallel, Z. Phys. B -Condensed Matter 71: 305 (1988).

    Article  ADS  Google Scholar 

  19. J. Peinke, J. Parisi, A. Mühlbach, and R.P. Huebener, Different types of current instabilities during low-temperature avalanche breakdown in p-germanium, Z. Naturforsch. 42 a: 441 (1987).

    Google Scholar 

  20. J. Peinke, U. Rau, W. Clauß, R. Richter, and J. Parisi, Critical dynamics near the onset of spontaneous oscillations in p-germanium, Euro-phys. Lett. 9: 743 (1989).

    Article  ADS  Google Scholar 

  21. J. Peinke, A. Mühlbach, R.P. Huebener, and J. Parisi, Spontaneous oscillations and chaos in p-germanium, Phys. Lett. 108 A: 407 (1985).

    ADS  Google Scholar 

  22. J. Peinke, B. Röhricht, A. Mühlbach, J. Parisi, Ch. Nöldeke, R.P. Huebener, and O.E. Rössler, Hyperchaos in the post-break down regime of p-germanium, Z. Naturforsch. 40 a: 562 (1985).

    ADS  Google Scholar 

  23. J. Peinke, J. Parisi, B. Röhricht, B. Wessely, and K.M. Mayer, Quasiperiodicity and mode locking of undriven spontaneous oscillations in germanium crystals, Z. Naturforsch. 42 a: 841 (1987).

    Google Scholar 

  24. U. Rau, J. Peinke, J. Parisi, R.P. Huebener, and E. Scholl, Exemplary locking sequence during self-generated quasiperiodicity of extrinsic germanium, Phys. Lett. 124 A: 335 (1987).

    ADS  Google Scholar 

  25. J. Peinke, J. Parisi, R.P. Huebener, M. Duong-van, and P. Keller, Quasiperiodic behavior of d.c. biased semiconductor electronic breakdown, Europhys. Lett, (to be published).

    Google Scholar 

  26. R. Stoop, J. Peinke, J. Parisi, B. Röhricht, and R.P. Huebener, A p-Ge semiconductor experiment showing chaos and hyperchaos, Physica D 35: 425 (1989).

    Article  ADS  Google Scholar 

  27. J. Parisi, J. Peinke, R.P. Huebener, R. Stoop, and M. Duong-van, Evidence of chaotic hierarchy in a semiconductor experiment, Z. Natür-forsch. a (to be published).

    Google Scholar 

  28. B. Röhricht, B. Wessely, J. Parisi, and J. Peinke, Crosstalk of the dynamical dissipative behavior between different parts in a current-carrying semiconductor, Appl. Phys. Lett. 48: 233 (1986).

    Article  ADS  Google Scholar 

  29. B. Röhricht, J. Parisi, J. Peinke, and R.P. Huebener, Spontaneous resistance oscillations in p-germanium at low temperatures and their spatial correlation, Z. Phys. B — Condensed Matter 66: 515 (1987).

    Article  ADS  Google Scholar 

  30. E. Scholl, J. Parisi, B. Röhricht, J. Peinke, and R.P. Huebener, Spatial correlations of chaotic oscillations in the post-breakdown regime of p-Ge, Phys. Lett. 119 A: 419 (1987).

    ADS  Google Scholar 

  31. E. Schöll, H. Naber, J. Parisi, B. Röhricht, J. Peinke, and S. Uba, Resonance transition of the spatial correlation factor of self-generated oscillations in the post-breakdown regime of p-Ge, Z. Naturforsch, a (to be published).

    Google Scholar 

  32. B. Röhricht, R.P. Huebener, J. Parisi, and M. Weise, Nonequilibrium critical and multicritical phase transitions in low-tempe rature electronic transport of p-germanium, Phys. Rev. Lett. 61: 2600 (1988).

    Article  ADS  Google Scholar 

  33. N. Rashevsky, An approach to the mathematical biophysics of biological self-regulation and of cell polarity, Bull. Math. Biophys. 2: 15 (1940);

    Article  MathSciNet  Google Scholar 

  34. N. Rashevsky, Further contributions to the theory of cell polarity and self-regulation, Bull. Math. Biophys. 2: 65 (1940);

    Article  MathSciNet  Google Scholar 

  35. N. Rashevsky, Physicomathematical aspects of some problems of organic form, Bull. Math. Biophys. 2: 109 (1940).

    Article  Google Scholar 

  36. A.M. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. London B 237: 37 (1952).

    Article  ADS  Google Scholar 

  37. B. Röhricht, J. Parisi, J. Peinke, and O.E. Rössler, Breakdown of symmetry in an exemplary Turing system, Dynamics and Stability of Systems (to be published).

    Google Scholar 

  38. E. Scholl, Nonequilibrium phase transitions and chaos in semiconductors, J. Phys. Chem. Solids 49: 651 (1988).

    Article  ADS  Google Scholar 

  39. E. Scholl, Instabilities in semiconductors including chaotic phenomena, Physica Scripta T 29: 152 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Parisi, J. (1990). Mutual Interplay between the Break-Up of Spatial Order and the Onset of Low-Dimensional Temporal Chaos in an Exemplary Semiconductor System. In: Busse, F.H., Kramer, L. (eds) Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems. NATO ASI Series, vol 225. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5793-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5793-3_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5795-7

  • Online ISBN: 978-1-4684-5793-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics