Spatial Instabilities and Defect Ordering in Solids

  • D. Walgraef
  • N. M. Ghoniem
Part of the NATO ASI Series book series (NSSB, volume 225)


Spatial instabilities leading to the formation of defect patterns and microstructures seem to appear generically in solids driven away from thermal equilibrium by physicochemical constraints. Some of these instabilities have been recently studied within the framework of dynamical models for the defect densities. The basic properties of these models which take into account the motion and interaction of defects are reviewed. It is shown on a specific example, namely the ordering of vacancy loops in irradiated materials, how the diffusion and nonlinear interactions may trigger the formation of defect microstructures.


Point Defect Network Dislocation Amplitude Equation Irradiate Material Critical Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Nicolis and F. Baras, “Chemical Instabilities, Applications in Chemistry, Engineering, Geology and Materials Science,” Reidel, Dordrecht, 1983.Google Scholar
  2. 2.
    D. Walgraef, “Patterns, Defects and Microstructures in Nonequilibrium Systems,” Martinus Nijhoff, Dordrecht, 1987.Google Scholar
  3. 3.
    G. Martin and L.P. Kubin, “Nonlinear Phenomena in Materials Science,” Trans tech, Aedermannsdorf (Switzerland), 1988.Google Scholar
  4. 4.
    D. Walgraef and E.C. Aifantis, Res Mechanica 23 (1988), p. 161.Google Scholar
  5. 5.
    D. Walgraef, in “Nonlinear Phenomena in Materials Science,” G. Martin and L.P. Kubin eds., Transtech, Aedermannsdorf (Switzerland), 1988, p. 77.Google Scholar
  6. 6. a).
    G. Martin, Phys.Rev. B30 (1984), p. 1424.ADSGoogle Scholar
  7. 6. b).
    K. Krishan, Radiat.Eff. 66 (1982), p. 121.CrossRefGoogle Scholar
  8. 7.
    D. Hull and D.J. Bacon, “Introduction to Dislocations,” 3rd edition, Pergamon, Oxford, 1984.Google Scholar
  9. 8.
    W. Jäger, P. Ehrhart and W. Schilling, in “Nonlinear Phenomena in Materials Science,” G. Martin and L.P. Kubin eds., Transtech, Aedermannsdorf (Switzerland), 1988, p. 279.Google Scholar
  10. 9.
    S.M. Murphy, Europhys.Lett 3 (1987), p. 1267.ADSCrossRefGoogle Scholar
  11. 10.
    S. Murphy, in “Nonlinear Phenomena in Materials Science,” G. Martin and L.P. Kubin eds., Transtech, Aedermannsdorf (Switzerland), 1988, p. 295.Google Scholar
  12. 11.
    R. Bullough, B.L. Eyre and K. Krishan, J.Nucl.Mat. 44 (1975), p. 121.Google Scholar
  13. 12.
    N.M. Ghoniem and G.L. Kulcinski, Radiation Effects 39 (1978), p. 47.CrossRefGoogle Scholar
  14. 13.
    D. Walgraef and N.M. Ghoniem, Phys.Rev. B39 (1989), p. 8867.ADSGoogle Scholar
  15. 14.
    A.C. Newell, in “Lectures in Applied Mathematics,” vol.15, M. Kac, ed., American Mathematical Society, 1974, p. 157.Google Scholar
  16. 15.
    H.Haken, “Synergetics: an Introduction,” 3rd ed., Springer, Berlin.Google Scholar
  17. 16.
    J.H. Evans, Mater. Sci. Forum 15–18 (1987), p. 869.CrossRefGoogle Scholar
  18. 17.
    R.W. Cahn, Nature 329 (1987), p. 284.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • D. Walgraef
    • 1
    • 3
  • N. M. Ghoniem
    • 2
  1. 1.Service de Chimie-PhysiqueUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Mechanical, Aerospace and Nuclear Engineering DepartmentUniversity of CaliforniaLos AngelesUSA
  3. 3.Senior Research AssociateNational Fund for Scientific ResearchBelgium

Personalised recommendations