Dynamical Behaviour of Taylor Vortices with Superimposed Axial Flow

  • Karl Bühler
  • Norbert Polifke
Part of the NATO ASI Series book series (NSSB, volume 225)


We present theoretical and experimental results on the stability and time-behaviour of instabilities in circular Couette flow with superimposed axial flow. Linear stability theory is used within the small gap approximation to explain the stability and dynamics of the instabilities in form of ring and spiral vortices. Ring vortices can travel only in the direction of throughflow. In contrast, spiral vortices can be obtained either in a steady state or time — dependent travelling in the direction or in opposite direction of the throughflow. The travelling direction depends on the ratio of the Taylor number to the throughflow Reynolds number. With throughflow as an initial condition a new secondary instability is found at high Taylor numbers.


Ring Vortex Axial Flow Secondary Instability Linear Stability Theory Taylor Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Taylor G. I., Stability of a viscous liquid contained between two rotating cylinders. Proc. Roy. Soc. (A) 223, 289–343 (1923)zbMATHGoogle Scholar
  2. [2]
    Goldstein S., The Stability of viscous fluid flow between rotating cylinders. Camb. Phil. Soc. 33, 41–61 (1937)ADSzbMATHCrossRefGoogle Scholar
  3. [3]
    Snyder H. A., Experiments on the stability of spiral flow at low axial Reynolds numbers. Proc. Roy.Soc. (A) 265, 198–214 (1962)ADSzbMATHCrossRefGoogle Scholar
  4. [4]
    Schwarz K. W., Springett B. E., Donnelly R. J., Modes of instability in spiral flow between rotating cylinders. J. Fluid Mech. 20, 2, 281–289 (1964)ADSCrossRefGoogle Scholar
  5. [5]
    Takeuchi D. I., Jankowski D.F., A numerical and experimental investigation of the stability of spiral Poiseuille flow. J. Fluid Mech. 102, 101–126 (1981)ADSCrossRefGoogle Scholar
  6. [6]
    Swinney H.L., Gollub J.P., Hydrodynamic instabilities and the transition to turbulence. Topics in Appl. Physics Vol. 45, Berlin, Springer, 1981zbMATHCrossRefGoogle Scholar
  7. [7]
    Bühler K., Strömungsmechanische Instabilitäten zäher Medien im Kugelspalt. Fortschritt-Berichte VDI, Reihe 7, Nr. 96, Düsseldorf 1985Google Scholar
  8. [8]
    Oswatitsch K., Physikalische Grundlagen der Strömungslehre. Handbuch der Physik, Bd. VIII/1, Hrsg. S. Flügge, Berlin, Springer, 1959Google Scholar
  9. [9]
    Bühler K., Ein Beitrag zum Stabilitätsverhalten der Zylinderspaltströmung mit Rotation und Durchfluß. Strömungsmechanik und Strömungsmaschinen 32, 35–44 (1982)Google Scholar
  10. [10]
    Bühler K., Der Einfluß einer Grundströmung auf das Einsetzen thermischer Instabilitäten in horizontalen Fluidschichten und die Analogie zum Taylor-Problem. Strömungsmechanik und Strömungsmaschinen 34, 67–76 (1984)Google Scholar
  11. [11]
    Bühler K., Instabilitäten spiralförmiger Strömungen im Zylinderspalt. ZAMM 64, T180–T184 (1984)Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Karl Bühler
    • 1
  • Norbert Polifke
    • 1
  1. 1.Institut für Strömungslehre und StrömungsmaschinenUniversität KarlsruheKarlsruhe 1West-Germany

Personalised recommendations