Caustics of Nonlinear Waves and Related Questions

  • Yves Pomeau
Part of the NATO ASI Series book series (NSSB, volume 225)


Patterns of parallel and equidistant layers are rather common in physical systems, as smectic liquid crystals or Rayleigh-Bénard rolls in thermal convection. Although a minimisation principle would impose perfectly straight layers, boundary conditions may change this when they impose the layers to be parallel to a closed smooth curve. Then a Huygens-like construction allows to draw the full pattern and yields caustics in general for linear wave equations. I show that, in nonlinear systems those caustics are to be replaced by grain boundaries, and cusps by ends of those grain boundaries. I study too the equivalent of the diffraction dressing of those grain boundaries by using a phase equation approach.


Helmholtz Equation Geometrical Optic Roll Orientation Linear Wave Equation Smectic Liquid Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Pearcey, Phil. Mag. 37, 311 (1946).MathSciNetGoogle Scholar
  2. 2.
    S. Zaleski, Y. Pomeau and A. Pumir, Phys. Rev. A29, 366 (1984).ADSGoogle Scholar
  3. 3.
    P. G. de Gennes “The Physics of liquid crystals”, Clarendon, Oxford (1974).Google Scholar
  4. 4.
    R. Bidaux, N. Boccara, G. Sarma, L. de Sèze, P. G. de Gennes and O. Parodi, J. de Phys. 34 661 (1973)CrossRefGoogle Scholar
  5. 4a.
    B. Mandelbrot “Fractals, form, chance and dimension”, Freeman and Co, San Francisco (1977).zbMATHGoogle Scholar
  6. 5.a.
    Y. Pomeau and P. Manneville, J. de Physique 42, 1067 (1981).MathSciNetCrossRefGoogle Scholar
  7. 5.b.
    Y. Pomeau, S. Zaleski and P. Manneville ZAMP 36, 367 (1985).MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 6.
    See for instance: T. Poston, I. Stewart “Catastrophe theory and its applications”, Pitman, London (1978).zbMATHGoogle Scholar
  9. 7.
    L. A. Segel, J. of Fluid Mech. 38, 203 (1969)ADSzbMATHCrossRefGoogle Scholar
  10. 7a.
    A. C. Newell, J. A. Whitehead, J. of Fluid Mech. 38, 279 (1969).ADSzbMATHCrossRefGoogle Scholar
  11. 8.
    J. Prost, Y. Pomeau and E. Guyon, preprint (April 1989); E. Guyon, communication at the 19 Statphys. Conf., Rio de Janeiro (Brazil), August 1989.Google Scholar
  12. 9.
    Y. Pomeau and P. Manneville, J. de Phys. Lettres L40, 609 (1979).MathSciNetCrossRefGoogle Scholar
  13. 10.
    P. Bryant, H. Suhl, Appl. Phys. Lett. 54, 78 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Yves Pomeau
    • 1
  1. 1.Laboratoire de Physique StatistiqueParis Cedex 05France

Personalised recommendations