Experimental Study of Binary Fluid Convection in a Quasi 1-Dimensional Cell without Reflections from the Sidewalls

  • Wolfgang Schöpf
  • Ingo Rehberg
Part of the NATO ASI Series book series (NSSB, volume 225)


With properly chosen parameters, convection in binary fluid mixtures sets in via a Hopf bifurcation leading to travelling waves. In this case one has to distinguish between a convectively unstable and an absolutely unstable situation. We present an observation in a cell where the fluid becomes unstable at the absolute instability point, not at the convective one as in most other experiments. This is done by preventing the sides of the cell from reflecting the travelling wave.


Hopf Bifurcation Convection Cell Copper Plate Small Disturbance Absolute Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cross, M. C., and Kim, K., 1988, Linear instability and the codimension-2 region in binary fluid convection between rigid impermeable boundaries, Phvs. Rev. A, 37:3909.MathSciNetADSCrossRefGoogle Scholar
  2. Heinrichs R., Ahlers, G., and Cannell, D. S., 1987, Traveling waves and spatial variation in the convection of a binary mixture, Phvs. Rev. A, 35:2761.ADSCrossRefGoogle Scholar
  3. Huerre, P., 1987, in “Instabilities and Nonequilibrium Structures,” E. Tirapequi, D. Villaroel, ed., Reidel, Dordrecht.Google Scholar
  4. Knobloch, E., and Moore, D. R., 1988, Linear stability of experimental Soret convection, Phvs. Rev. A, 37:860.ADSCrossRefGoogle Scholar
  5. Kolodner, P., Passner, A., Surko, C. M., and Waiden, R. W., 1986, Onset of Oscillatory Convection in a Binary Fluid Mixture, Phvs. Rev. Lett, 56:2621.ADSCrossRefGoogle Scholar
  6. Kolodner, P., Bensimon, D., and Surko, C. M., 1988, Traveling-Wave Convection in an Annulus, Phvs. Rev. Lett.. 60:1723.ADSCrossRefGoogle Scholar
  7. Kolodner, P., Surko, C. M., Passner, A., and Williams, H. L., 1987, Pulses of oscillatory convection, Phvs. Rev. A, 36:2499.ADSCrossRefGoogle Scholar
  8. Moses, E., and Steinberg, V., 1986, Flow patterns and nonlinear behavior of traveling waves in a convective binary fluid, Phvs. Rev. A, 34:693.ADSCrossRefGoogle Scholar
  9. Rasenat, S., Hartung, G., Winkler, B. L., and Rehberg, I., 1989, The shadowgraph method in convection experiments, Exp. in Fluids. 7:412.ADSCrossRefGoogle Scholar
  10. Rehberg, I., Bodenschatz, E., Winkler, B., and Busse, F. H., 1987, Forced Phase Diffusion in a Convection Experiment, Phvs. Rev. Lett.. 59:282.ADSCrossRefGoogle Scholar
  11. Rehberg, I., and Busse, F. H., 1988, Phase Diffusion in a Ramped Convection Channel, in “Propagation in Systems Far from Equilibrium,” J. E. Wesfreid, H. R. Brand, P. Manneville, G. Albinet, N. Boccara, ed., Springer, Berlin, Heidelberg.Google Scholar
  12. Schöpf, W., 1988 “Konvektion in binären Flüssigkeiten und multikritisches Verhalten in der Nähe des Kodimension-2 Punktes”, Diploma Thesis, Universität Bayreuth.Google Scholar
  13. Schöpf, W., and Zimmermann, W., 1989, Multicritical Behavior in Binary Fluid Convection, Europhvs. Lett.. 8:41.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Wolfgang Schöpf
    • 1
  • Ingo Rehberg
    • 1
  1. 1.Physikalisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations